HPGRAFIK

Benutzer-Handbuch des Programms "HPGRAFIK"

Hans Ulrich Schmidt, DJ6TA, 53123 Bonn

Version 2018

Inhalt:

1.	Einle	itung	5					
2.	Aufg	Aufgaben des Programms HPGRAFIK						
3.	Die H	HPGRAFIK-Benutzeroberfläche						
	3.1.	HP-BASIC-Benutzeroberfläche	7					
	3.2.	Programm-Start, Start-Menü	9					
	3.3.	Auswahl-Menü	10					
		3.3.1. Auswahl-Menü mit voller Bildschirmbreite	11					
		3.3.2. Mehrspaltiges Auswahl-Menü	12					
	3.4.	Schalt-Menü / Eingabe-Menü	12					
		3.4.1. Eingabe-Menü mit voller Bildschirmbreite	13					
		3.4.2. Eingabe-/Schalt-Menü mit kleinen Eingabefeldern	14					
	3.5.	Einzeiliger Eingabe-Bildschirm	15					
	3.6.	Editor-Bildschirm	16					
	3.7.	Laden und Abspeichern von Dateien	17					
		3.7.1. Laden von Dateien	17					
		3.7.2. Laden von Nicht-Standard-Dateien	20					
		3.7.3. Abspeichern von Dateien	22					

4.	Datei	-Typen, Datei-Formate	23
	4.1.	Datei-Typen, Datei-Namen	23
	4.2.	INT-Standard-Datei	23
	4.3.	Mess-Anwendungen	25
	4.4.	Konfigurationsliste CONF_LISTE	27
	4.5.	Funktionstasten-Belegungs-Datei SYSKEY	29
5.	Ausw	vertung gespeicherter Daten (HPGRAFIK)	30
	5.1.	Grundsätzliche Vorbemerkungen	30
	5.2.	Programm-Konfiguration (Umgebung)	31
		5.2.1. Massenspeicher und Inhaltsverzeichnis (lesen)	31
		5.2.2. Massenspeicher und Inhaltsverzeichnis (abspeichern)	32
		5.2.3. Katalog eines Massenspeichers / Verzeichnisses	32
		5.2.4. Erweiterter Katalog mit Ausdruck der Dateiköpfe	33
		5.2.5. Drucker-Auswahl	33
		5.2.6. Pfade für Unterprogramme	34
	5.3.	Grafische Darstellung von Dateien	35
	5.4.	Berechnungen mit Datei-Inhalten (Manipulation)	41
		5.4.1. Verschiebung, Dehnung, Nullpunkt, Teile löschen	42
		5.4.2. Addition, Multiplikation von zwei Dateien	44
		5.4.3. Integration, Differentiation	45
		5.4.4. Mittelung, Glättung, Datenreduktion, Interpolation	46
		5.4.5. Anpassung einer Kurve an die Daten (Kurven-Fit)	47
		5.4.6. Absolutbetrag, Inversion, Logarithmus, Potenz, Exponent	47

	5.4.7. Verknüpfung von Dateien	48
	5.4.8. Listen-Verarbeitung von Dateien	51
	5.4.9. Änderung von Datei-Einträgen	54
5.5.	Behandlungen von Dateien mit Spezialprogrammen	55
5.6.	Datenübertragung	57
5.7.	Ausdruck von Dateien in Tabellenform	57
5.8.	Handeingabe von Wertepaaren, Digitalisier-Tablett	57
5.9.	Berechnung von Funktionswerten	58
5.10.	Text-Editor	58

1. Einleitung

Das Programm HPGRAFIK dient zur grafischen Darstellung von gespeicherten Messergebnissen der Programme MESSZEIT, WOB300, ZPVWOB und weiterer Messprogramme mit der gleichen Unterprogramm-Bibliothek sowie der Umrechnung und weiteren Auswertung dieser Daten. Darüber hinaus können auch ASCII-Dateien in anderen Formaten eingelesen, bearbeitet und als Standard-Dateien wieder abgespeichert werden. Das Programm ist als Auswerte-Teil auch im Programmpaket MESSZEIT enthalten. HPGRAFIK ist lauffähig auf HP-9000-Rechnern mit den Betriebssystemen HP-BASIC-WS und HP-UX/RMB-UX und auf PCs unter der Emulationssoftware HTB sowie unter Linux mit TAMS-BASIC.

In der Anfangszeit der rechnergesteuerten Messtechnik wurden die benötigten Programme meist in den Labors von Firmen und Forschungseinrichtungen selbst geschrieben (typischerweise in der Programmiersprache HP-BASIC bzw. RMB, teilweise auch in C), was aber i.A. zu Spezial-Programmen für ganz bestimmte Geräte und ganz bestimmte Anwendungen führte. Zu der Zeit waren Rechner der Serie HP-9000 mit HP-BASIC quasi Standard für diese Aufgaben, der PC wurde erst viele Jahre später eingeführt und erreichte erst ein Jahrzehnt später die Leistungsfähigkeit der HP-9000-Rechner in diesem Einsatzbereich. Später wurden dann auch kommerzielle Produkte zur grafischen Darstellung und Auswertung von Mess-Dateien herausgebracht, hauptsächlich für den Betrieb auf PCs.

Das Programm wurde ursprünglich als universelles Daten-Auswerteprogramm für HP-9000-Workstation-Rechner geschrieben, die von Haus aus mit HPIB-Interface versehen sind und durch die Programmier-Umgebung "HP-BASIC" auf ideale Weise die Messgeräte-Programmierung in Hochsprache ermöglichen. Als Betriebssysteme kamen HP-BASIC und (insbes. für Server und Auswerte-Rechner) HP-UX mit aufgesetztem HP-BASIC zum Einsatz.

Die Rechner-Familie HP-9000 (Serie 200 und 300) sowie HP-BASIC wurden praktisch bis zum Ende der Firma HP als Messgeräte-Hersteller im Jahre 2000 gepflegt und weiterentwickelt, und viele Messplätze sind bis heute mit diesen Rechnern in Betrieb. Um die erheblichen Software-Investitionen im Laborbetrieb weiterverwenden zu können, wurde die Programmiersprache/Programmier-Umgebung HP-BASIC ab Ende der neunziger Jahre von der Firma TRANSERA auf PCs portiert und ist heute als "HT-BASIC" auf praktisch jedem PC lauffähig. Daneben hat die Firma TAMS das HP-BASIC auf PCs unter LINUX umgesetzt.

2. Aufgaben des Programms HPGRAFIK

Der Programmteil 'HPGRAFIK' dient zur grafischen Darstellung und zur Auswertung bzw. Manipulation von Messwert-Dateien aus MESSZEIT, aber auch von Dateien aus anderen Quellen. Folgende Grund-Funktionen werden vom Programm angeboten:

• Grafische Darstellung von Mess-Dateien

Die grafische Ausgabe von Dateien kann erfolgen auf:

- internem Grafik-Bildschirm (schwarz/weiss oder farbig),
- zusätzlichem Farb-Grafik-Bildschirm (HP-9000),
- Drucker als Bildschirm-Kopie
- (z.B. Think-Jet, Laser-Jet für HP-9000, Windows-Standard-Drucker (PC)),
- lokalem HPGL-Plotter
- Netzwerk-HPGL-Plotter (HP-9000/SRM),
- HPGL-Dateien.
- Ausdruck von Dateien in Tabellenform
- Umrechnung, Veränderung, Manipulation von Dateien
 - einfache arithmetische Operationen wie Verschieben, Stauchen, Dehnen, Logarithmierung, Absolutbetrag-Bildung usw.,
 - Verknüpfung mehrerer Dateien
 - (Addition, Subtraktion, Multiplikation, Division, Verkettung),
 - Mittelwertbildung, Glättung, Integration, Differentiation
 - Kurvenanpassung (Fit) an Datei-Wertepaare.
 - usw.
- Umrechnungen von Messwerten in andere Messgrössen / Dimensionen

z.B. Volt - Watt, Watt - dBm, dBm - dBuV, dB - SWV, Rho - Z

- Umrechnung von Messwert-Dateien durch nachladbare Spezialprogramme
- Neu-Erstellung von Messwert-Dateien
 - Handeingabe von Wertepaaren in Listen,
 - Digitalisierung von Papiervorlagen mit Digitalisiertablett,
 - Berechnung von Funktionswerten.

3. Die MESSZEIT-Benutzeroberfläche

3.1. HP-BASIC-Benutzeroberfläche

Das Programm wurde wie bereits erwähnt in HP-BASIC für die HP-9000-Rechnerfamilie geschrieben. Es verwendet daher weitgehend die auf diesen Rechnern verwendete HP-BASIC-Benutzeroberfläche. Bei der Portierung von HP-BASIC auf PCs unter dem Programm HTB wird diese Benutzeroberfläche emuliert, und die Anwenderprogramme wie MESSZEIT oder HPGRAFIK laufen innerhalb dieser Emulation. Für Benutzer, die keine Kenntnisse über die Bedienung der Original-Rechner haben, soll daher diese Benutzer-Oberfläche, die von der Bedienung von PCs und vor allem Windows doch teilweise erheblich abweicht, kurz dargestellt werden. Weiterhin werden die in HPGRAFIK verwendeten Bedienungs-Menüs erläutert.

Auf HP-9000-Rechnern mit HP-Basic-WS-Betriebssystem erscheint die im Folgenden beschriebene Benutzeroberfläche sofort. Unter HP-UX und Linux muss der Prozess "rmb" gestartet werden, die Oberfläche erscheint dann in einem X11-Fenster (oder auf dem gesamten Bildschirm, falls kein X11-System gestartet wurde).

Abb.1: HP-BASIC/RMB-Benutzeroberfläche

Auf PCs mit Windows wird die aktuell installierte HTB-Version als Programm gestartet, die Benutzeroberfläche erscheint in einem Windows-Fenster. Die DOS-Version von HTB kann auf einem PC mit MS-DOS-5/6/7 (Windows-95/98 im DOS-Modus) durch Eingabe von "htb386" im HTB-Verzeichnis gestartet werden, die Benutzeroberfläche erscheint auf dem gesamten Bildschirm.

Unter allen Windows- und X11-Systemen kann RMB bzw. HTB mehrfach gestartet werden. Dadurch ist es möglich, ein Fenster für die Messungen und ein weiteres für die gleichzeitige Datei-Auswertung zu verwenden.

Die Abb.1. zeigt die HP-BASIC-Benutzeroberfläche auf dem Standard-Bildschirm bzw. dem Fenster. Deren Anzeigebereich besteht aus 26 Zeilen zu je 80 Zeichen, wovon 22 Zeilen den Druckbereich ausmachen. Darunter befindet sich eine sog. Display-Zeile, auf der Meldungen unabhängig vom Druckbereich erscheinen können. Dann folgt eine Eingabe-Zeile zu 160 Zeichen, die auf dem Standard-Bildschirm als zwei Zeilen dargestellt wird. Darunter liegt die Fehlermeldungs- und Status-Zeile. Unterhalb des Anzeigebereichs liegen die Beschriftungsfelder für die acht Funktionstasten f1 – f8.

Mit Ausnahme einiger Menüs erfolgt die Text-Eingabe in der Eingabe-Zeile, die Eingabe wird mit <RETURN> abgeschlossen. Die Cursor-Position in der Eingabe-Zeile kann mit den waagerechten Cursor-Tasten bewegt werden. Mit SHIFT-Pfeillinks bzw. SHIFT-Pfeil-rechts wird der Cursor an den Anfang bzw. das Ende gesetzt.

Der Druckbereich kann mit den senkrechten Cursor-Tasten, den Tasten **Bild-^/Prev** und **Bild-v/Next** nach oben und unten gerollt werden. An HP-9000-Rechnern kann dazu auch der HIL-Drehknopf und die HIL-Maus verwendet werden. Diese Roll-Funktion ist in einigen Menüs blockiert, stattdessen werden hiermit die Auswahl-Zeilen bewegt.

In den acht Funktionstasten-Beschriftungsfeldern werden die Belegungen der zugehörigen Funktionstasten angezeigt. Die vom Betriebssystem standardmässig belegten Funktionen werden in verschiedenen Programmsegmenten von MESSZEIT und HPGRAFIK durch programmspezifische Funktionen ersetzt, diese werden durch Drücken der Taste sofort ausgeführt. In Abb.1. sind die Tasten f1, f2 und f3 mit den System-Funktionen "EDIT", "CONTINUE" und "RUN" belegt, während die Tasten f4 und f5 den Start der Programme MESSZEIT und HPGRAFIK auslösen. Mit f6 und f7 werden hier zwei unterschiedliche Platten-Laufwerke angewählt, mit f8 wird an die Wurzel des Datei-Systems mit Eingabe des weiteren Pfades gesprungen. Die Standard-Belegung vor Programmstart ist in der Datei SYSKEY gespeichert, sie kann editiert werden (siehe 4.5.).

Mit den Tasten "Menue" und "System/User" bei HP-9000-Rechnern bzw. mit der Taste f10 (oder f12 je nach HTB-Version) auf der PC-Tastatur kann eine weitere System-Belegung der Funktionstasten aufgerufen werden.

Falls das Programm wegen eines (behebbaren) Fehlers anhält (siehe Felermeldungs-Zeile), so kann es nach Beheben des Fehlers (z.B. Wiedereinschalten eines Messgerätes) mit der Taste "CONTINUE" fortgeführt werden. Falls der Fehler nicht behebbar ist, so kann das Programm mit der Taste "RUN" neu gestartet werden. Das Programm und so gut wie alle Einstellungen bleiben dabei im Arbeitsspeicher erhalten. Wenn auch dies nicht zum Erfolg führt (z.B. bei nicht-vorhandenen Gerätetreiber-Unterprogrammen), so kann mit der RESET-Funktion auf der HP-9000-Tastatur bzw. dem RESET-Knopf auf der Funktionsleiste des HTB-Fensters und anschliessendem "RUN" ein Neustart erfolgen. Auch hierbei bleiben Programm und Einstellungen im Arbeitsspeicher erhalten.

3.2. Programm-Start, Start-Menü

Abb.2.: HPGRAFIK-Programm-Startmenü

Das Programm HPGRAFIK ist (falls kein anderer Ort gewählt wurde) standardmässig im Ordner /MESSPROGRAMME<:Massenspeicher-Bezeichner> (für HP-9000-Rechner) bzw. <Laufwerk:>\MESSPROGRAMME (für PC) zusammen mit allen Unter-Ordnern für die MESSZEIT/HPGRAFIK-Unterprogramme gespeichert. Der Programm-Aufruf ist standardmässig mit der Funktionstaste f4 der Benutzer-Oberfläche verknüpft, das Programm startet durch Drücken der Funktionstaste. Alternativ kann das Programm in der Befehlszeile aufgerufen werden:

LOAD "/MESSPROGRAMME/HPGRAFIK:REMOTE 21,0",1 <RETURN> oder

LOAD "/MESSPROGRAMME/HPGRAFIK:,1400,0",1 <RETURN>

für HP-9000-Rechner,

LOAD ,,\MESSPROGRAMME\HPGRAFIK",1 <RETURN>

bzw.

LOAD ,,c:\MESSPROGRAMME\HPGRAFIK",1 <RETURN>

für PCs mit HTB. Unter HTB kann der normale und der umgekehrte Schrägstrich mit gleicher Bedeutung verwendet werden.

Die gespeicherten Mess-Dateien können standardmässig 2050 Wertepaare enthalten. Falls eine höhere Anzahl gewünscht wird und der Arbeitsspeicher hierfür ausreicht, kann durch Eingabe einer höheren Zahl und f7 dieser Wert erhöht werden. Durch einen entsprechenden Eintrag im AUTOST-Programm kann dieser Wert standardmässig auf einen höheren Wert gesetzt werden.

3.3. Auswahl-Menü

Im Programmverlauf erscheinen an vielen Stellen sogenannte Auswahl-Menüs. Diese dienen dazu, den Inhalt der hell unterlegten Zeile bzw. des hell unterlegten Feldes auszuwählen.

3.3.1. Auswahl-Menü mit voller Bildschirmbreite

Abb.3.: Auswahl-Menü mit voller Bildschirmbreite

Im Auswahl-Menü mit voller Bildschirmbreite wird eine ganze Zeile des Druckbereichs hell unterlegt. Die zu wählende Zeile wird mit den vertikalen Cursor-Tasten (in HP-9000-Rechnern auch mit dem Drehknopf oder der Maus) bewegt. Die Auswahl erfolgt durch Drücken der <RETURN>-Taste oder der Taste f8 (OK). Alternativ kann die Zeilen-Nummer in die Eingabezeile geschrieben und mit <RETURN> oder f8 abgeschickt werden.

Mit Auswahl der Zeile (0) kann zum vorigen Menü zurückgesprungen werden, die gleiche Funktion hat die Funktionstaste f6 (ABBRUCH). Mit der Funktionstaste f1 (HILFE) kann in vielen Fällen ein Hilfe-Text eingeblendet werden, der den Menüpunkt näher erklärt. Der Hilfe-Text wird mit der Funktionstaste f8 (ENDE) wieder verlassen. Wenn der Hilfe-Text länger als eine Bildschirmseite ist, so kann er mit den senkrechten Cursor-Tasten (in HP-9000-Rechnern auch mit dem Drehknopf oder der Maus) auf- und abgerollt werden.

3.3.2. Mehrspaltiges Auswahl-Menü

 \DAEMPFUNGS_GLD \MESSTECH \SPEKTRUM \WEICHE \ABSCHLUSS	\ANTENNEN \FILTER \MINI_CIRCUITS \TRANSCEIVER \WLAN	\AFU \HOHLLEITER \PACKET \VERST_AFU \ZIRK_ISOL	\ATU \KABEL \RICHTKOPPLER \UERST_MESS \ANT_ANLAGE
i:\hp\hp-daten\D v ^ =Zeile , < 1 <mark>HILFE 2 3</mark>	ATEN_AA > = Spalte waehlen 4	1 5 <mark>6</mark> ABBRI	User 1 Running JCH <mark>7 QUIT 8 OK</mark> R

Abb.4.: Mehrspaltiges Auswahl-Menü

Im Auswahl-Menü können bei mehrspaltiger Textdarstellung einzelne Segmente einer Zeile hell unterlegt werden. Die Bewegung des auszuwählenden Feldes geschieht hier durch die horizontalen und die vertikalen Cursor-Tasten (in HP-9000-Rechnern auch mit dem Drehknopf oder der Maus). Die Auswahl erfolgt durch <RETURN> oder f8 (OK).

Diese Form des Auswahl-Menüs wird u.a. zur Auswahl von Dateien und Ordnern verwendet (siehe 3.7).

3.4. Schalt-Menü / Eingabe-Menü

Ein weiterer Menü-Typ, das sogenannte Schalt-Menü oder Eingabe-Menü, wird ebenfalls im Programmverlauf häufig verwendet. Es ermöglicht die Eingabe eines Textes in der angewählten und hell unterlegten Menü-Zeile, also nicht wie oben in der Eingabe-Zeile.

3.4.1. Eingabe-Menü mit voller Bildschirmbreite

1) 2)	Mass Verz	REMO /USEF	DTE 2 RS/HU	1,0 S/MES	STEC	HNIK/RI	CHTK	PPLER	_						
Aus	swahl	von t	lasse	nspei	cher	(Mass)	und	Verze	ichnis	(Verz) fr [aten			
LГ	^ =Ze :	ile wa	aehle	'n											١v
1411	LFE	2WAHL <	-	3VAHL >		4 DRUCK	EN	5		6 ABI	BRUCH7	Use QUIT	r 1 8	Runn OK	ing R

Abb.5.: Eingabe-Menü mit voller Bildschirmbreite

Beim Schalt-/Eingabe-Menü bestehen die einzelnen Zeilen des Druckbereichs aus einer Zeilennummer und einer Beschreibung am linken Rand und dem eigentlichen Zeilen-Inhalt. Bei mehrzeiligen Menüs kann der Inhalt-Teil einer Zeile durch Bewegen des hell unterlegten Bereichs mit den vertikalen Cursor-Tasten ausgewählt werden. In diesen hell unterlegten Bereich kann direkt ein Text geschrieben werden bzw. der vorhandene Text editiert werden. Abb.5. zeigt als Beispiel das Eingabe-Menü für die Eingabe eines Massenspeicher-Pfades auf einem HP-9000-Rechner. Unter HTB wird das gleiche Menü verwendet, hier wird die erste Zeile leer gelassen und der gesamte Pfad in die zweite Zeile geschrieben. Das Menü muss durch die Funktionstaste f8 (OK) verlassen werden (nicht <RETURN>!). Mit der Taste f6 (ABBRUCH) kann die Eingabe abgebrochen werden.

Wenn in der zweiten Zeile ein Massenspeicher-Pfad angezeigt wird, so kann durch Drücken der Taste f1 (HILFE) ein Datei-Auswahlmenü aufgerufen werden, welches die Unter-Ordner dieses Pfades anzeigt. Ein angewählter Unter-Ordner kann so ausgewählt und in den Massenspeicher-Pfad eingetragen werden.

3.4.2. Eingabe-/Schalt-Menü mit kleinen Eingabefeldern

Abb.6.: Eingabe-/Schalt-Menü mit kleinen Eingabefeldern

Das Eingabe-Menü wird auch häufig mit kleineren Eingabe-Feldern (typisch 10 Zeichen bis zur halben Bildschirm-Breite) verwendet. Hier werden normalerweise standardisierte Text-Blöcke eingetragen. Wenn es eine bestimmte Anzahl von möglichen Einträgen gibt, so können diese durch die Funktionstasten f2 (WAHL < -) und f3 (WAHL ->) nacheinander aufgerufen werden. Weiterhin kann in diesem Fall durch f1 (HILFE) eine Liste der hier möglichen Einträge aufgerufen und ein Wert ausgewählt werden.

Die senkrechte Bewegung des hell unterlegten Eingabe-Feldes erfolgt durch die vertikalen Cursor-Tasten. Die <RETURN>-Taste bewegt das Feld eine Position nach unten. Es existieren auch Eingabe-Menüs mit mehreren Eingabe-Feldern pro Zeile nebeneinander. Die horizontale Bewegung von einem Feld zum nächsten in der gleichen Zeile erfolgt durch die Taste <TAB> bzw. rückwärts durch <SHIFT><TAB>.

Das Menü wird mit den vorgenommenen Einträgen durch die Taste f8 (OK) abgeschlossen und verlassen, durch f6 (ABBRUCH) wird das Menü ohne die Änderungen bzw. Einträge verlassen. Die alten Werte bleiben dann erhalten.

3.5. Einzeiliger Eingabe-Bildschirm

Ähnlich wie in der Grundansicht der HP-Basic-Benutzeroberfläche kann die Eingabe-Zeile mit einer Reihe von programmspezifisch definierten Funktionstasten-Belegungen kombiniert sein. Es kann wahlweise ein Text in die Eingabe-Zeile geschrieben und mit <RETURN> oder der Funktionstaste f8 (OK oder ENDE) abgeschlossen werden, oder es ist eine der belegten Funktionstasten zu bedienen, deren Funktion sofort ausgeführt wird.

Dieser einzeilige Eingabe-Bildschirm ist häufig kombiniert mit einer (nichteditierbaren) Text-Anzeige im Druckbereich, dessen Inhalt bei Bedarf mit den senkrechten Cursor-Tasten nach oben und unten gerollt werden kann.

3.6. Editor-Bildschirm

FREQUEN PEGEL,1 AUSG_EII	2,1,1,150 ,1,-4 dBm N	1Hz				
4 Fm_aus	0	<tab>=Zeile ed.</tab>				
1HILFE	2ALLES Loesche	BVERZEICH4TEXT NIS DRUCKEN	5DATEI LESEN	6DATEI Schr.	User 1 7 QUIT	Running 8 ENDE R

Abb.8.: Editor-Bildschirm

Der Editor-Bildschirm dient dazu, ein mehrzeiliges Textfeld einzugeben oder zu editieren. Im Gegensatz zu den Schalt-/Eingabe-Menüs wird die aktuelle Textzeile in der unten befindlichen Eingabe-Zeile geschrieben und NUR mit der <RETURN>-Taste im Textfeld gespeichert. Sie erscheint dann im Druckbereich oberhalb der hell unterlegten Zeile.

Zum Editieren bereits eingegebener Zeilen kann das Textfeld mit den vertikalen Cursor-Tasten nach oben und unten gerollt werden. Die zu editierende Zeile muss im hell unterlegten Bereich in Bildschirm-Mitte liegen. Mit der Taste <TAB> (für HP-9000 mit HIL-Tastatur <TAB> oder <SELECT>, mit Nimitz-Tastatur <SHIFT><EXECUTE>) wird diese Zeile in die Eingabe-Zeile kopiert und kann dort editiert oder überschrieben werden. Mit <RETURN> wird sie dann wieder in das Textfeld geschrieben.

Die Beendigung des Editor-Bildschirms mit Weitergabe des Textfeldes erfolgt mit der Fuktionstaste f8 (ENDE). Zur Beendigung ohne Weitergabe bzw. ohne Änderung des vorhandenen Textes wird die Taste f7 (QUIT) betätigt.

Mit der Taste <Insert line> (HP-9000) bzw. <SHIFT><Einfg> (PC) kann im Textfeld eine neue Zeile oberhalb der hell unterlegten Zeile eingefügt werden, mit der Taste <Delete line> (HP-9000) bzw. <SHIFT><Entf> (PC) die hell unterlegte Zeile gelöscht werden.

Über f5 (DATEI LESEN) kann eine ASCII-Datei in das Textfeld geladen werden, mit f6 (DATEI SCHR.) das Text-Feld in eine ASCII-Datei geschrieben werden. f1 (HILFE) zeigt einen kurzen Hilfetext zum Editor, f2 löscht das gesamte Textfeld, f3 zeigt den momentanen Massenspeicher-Pfad an, mit f4 kann das Textfeld auf dem eingestellten Drucker ausgedruckt werden.

Der Editor-Bildschirm wird für eine Reihe von Tabellen in MESSZEIT und HPGRAFIK verwendet, z.B. für die Eingabe von Messzeiten, Befehls-Tabellen, Wertepaaren für grafische Darstellungen u.a.

3.7. Laden und Abspeichern von Dateien

3.7.1. Laden von Dateien

Wenn eine neue Datei geladen werden soll, so wird die Abfrage nach Abb.9. auf dem Bildschirm dargestellt. Mit der Antwort "JA" (Taste f7 oder J<RETURN> bzw. JA<f8>) wird das Laden fortgesetzt. Mit der Antwort "NEIN" (Taste f6) oder N<RETURN> bzw. N<f8> bleibt die bisher geladene Datei im Arbeitsspeicher.

Abb.9.: Abfrage Laden einer Datei

Abb.10.: Fortsetzung der Abfrage Laden einer Datei

Die Fortsetzung der Lade-Abfrage erfolgt nach Abb.10. Mit der Taste ABBRUCH <f6> bzw. mit A<RETURN> kann zur vorigen Abfragestufe zurückgekehrt werden. Man kann nun zwischen zwei Auswahl-Methoden entscheiden, der klassischen Texteingabe des Dateinamens und einem Datei-Auswahl-Menü (MENUE <f7>).

Klassische Auswahlmethode:

Mit J <RETURN> wird das Inhaltsverzeichnis des momentanen Ordners in der Betriebssystem-Darstellung angezeigt, mit N <RETURN> unterbleibt dies. In beiden Fällen wird anschliessend zuerst nach dem Datei-Typ (siehe 4.1) gefragt, also DAT, ASC, DUX und anschliessend nach der Datei-Nummer. Mit der Eingabe von –1 als Datei-Nummer kann die Auslese immer noch abgebrochen werden.

Mit der Taste WECHSEL <f5> oder mit W<RETURN> kann der Ordner gewechselt werden. Es erscheint ein zweizeiliges Eingabe-Menü nach 3.4.1., in dem der momentane Pfad angezeigt wird (Abb.11. für RMB und Abb.12. für HTB).

1)	Mass	:REMOTE	21,0		764			
2)	Verz	/USERS/H	IUS/MESSTEC	HNIK/RICHTH	COPPLER_			
Aus	wahl	von Mass	senspeicher	(Mass) und	l Verzeichnis	(Verz) fr Dat	en	
L LÂ	=Zei	le waehl	len					lv.
1011	FF	алон	SHORI		5		User 1	Running
		<	>	DRUGKEN	ĺ	C HEDROCHS Q	011 0	R

Abb.11.: Massenspeicher-Pfad für HP-9000-Rechner (RMB)

Die Einträge können direkt mit der Tastatur editiert werden, wobei in der HTB-Version nur die zweite Zeile einen Text enthalten darf. Wenn der Auswahl-Balken auf der zweiten Zeile steht, kann mit der Taste HILFE <f1> ein Auswahl-Menü eingeblendet werden, welches die darunterliegenden Ordner anzeigt. Das Pfad-Menü wird mit OK<f8> bestätigt und mit ABBRUCH<f6> ohne Änderung des Pfades verlassen.

Abb.12.: Massenspeicher-Pfad für PCs mit HTB

Datei-Auswahl-Menü:

	DATA	DATO	DATA 4
27	DAT1	DATZ	DAI1.1
DAT2.1	DAT3	DAT1.2	DAT2.2
DAT4	DAT101	DAT102	DAT103
DAT101.1	DAT102.1	DAT103.1	DAT104
DAT101.2	DAT102.2	DAT103.2	DAT105
DAT106	DAT107	DAT201	DAT202
DAT203	DAT204	DAT205	DAT206
DAT207	DAT208	DAT209	DAT210
DAT211	DAT212	DAT213	DAT214
DAT215	DAT216	DAT217	DAT218
DAT219	DAT220	DAT221	DAT222
DAT223	DAT224	DAT225	DAT226
DAT227	DAT228	DAT229	DAT230
DAT231	DAT232	DAT233	DAT234
DAT235	DAT236	DAT237	DAT238
DAT239	DAT240	DAT241	DAT242
DAT243	DAT244	DAT245	DAT246
DAT247	DAT248	DAT205.1	DAT206.1
v i:\hp\hp-dater	\DATEN_AA\VERST_AFU	\70_CM_PA_MODUL	
v ^ =Zeile , <	≻ = Spalte waehlen		
			User 1 Running
THILFE 2 3	4	5 6 ABBRUI	CH7 QUIT 8 OK R

Mit der Taste MENUE<f7> oder M<RETURN> kann die zweite Auswahl-Methode verwendet werden. Es erscheint ein mehrzeiliges und mehrspaltiges Auswahl-Menü, welches den Inhalt des momentanen Ordners (Dateien und Unter-Ordner) anzeigt. Das Symbol ".." in der linken oberen Ecke ermöglicht den Rücksprung in einen übergeordneten Ordner. Die Auswahlfelder mit einem beginnenden Schrägstrich bezeichnen Unter-Ordner, in die durch Auswahl gesprungen werden kann. Die Bewegung des hellen Auswahl-Balkens erfolgt durch die horizontalen und vertikalen Cursor-Tasten, die Auswahl durch <RETURN> oder OK<f8>.

Falls das hell unterlegte Segment eine Standard-Datei bezeichnet (bestehend aus dem Präfix DAT, ASC oder DUX und einer anschliessenden Zahl, siehe Kapitel 4), so kann durch Drücken der Taste <f1> (HILFE) der Beschreibungsteil des Dateikopfes angezeigt werden. Durch nochmaliges Drücken von <f1> (ZURUECK) kehrt man in das Datei-Menü zurück, mit <f8> (LADEN) kann die gewählte Date direkt geladen werden.

Der gesamte Pfad bis zum aktuellen Ordner wird in der Display-Zeile angezeigt. Wenn das Textfeld (d.h. die Anzahl der vorhandenen Dateien) grösser als der Bildschirmbereich ist, so wird dies in der Display-Zeile durch die zusätzlichen Symbole **|v|** und/oder **|^|** angezeigt. In diesem Fall kann durch die Tasten "**Bild v /Next**" bzw. "**Bild ^ /Prev**" die nächste oder vorige Bildschirm-Seite angezeigt werden.

Achtung!!

Im Gegensatz zu HP-9000-Rechnern kann auf PCs unter HTB mit dem Symbol ".." nur bis zu dem Ordner zurückgesprungen werden, der beim Programmstart ausgewählt wurde. Im Notfall kann unter dem Menü "Umgebung" der Start-Ordner neu gesetzt werden. Weiterhin sind unter HTB die Funktionen der Tasten "Bild v" und "Bild ^" vertauscht. In einigen Fällen erscheint dann ein Ordner als leer, obwohl ein Inhalt vorhanden ist. Durch nochmaliges Betätigen der Tasten "Bild v" und "Bild ^" kann dann die richtige Darstellung erreicht werden.

3.7.2. Laden von Nicht-Standard-Dateien

In vielen Fällen können auch Messwerte von ASCII-Dateien geladen werden, die nicht den in 4.1 und 4.2 beschriebenen Formaten entsprechen. Hierfür müssen Zusatz-Informationen über die jeweilige Datei vorhanden sein wie Dezimalzeichen, Trennzeichen der Daten in einer Zeile, Zeilenendzeichen, Anzahl der Spalten und Zeilen.

Abb.14.: Einstell-Menü für Nicht-Standard-Dateien

Nach der klassischen Datei-Auswahl wird als Dateityp "IMP" (für IMPort) angegeben und dann im nächsten Schritt der komplette Dateiname eingegeben. In der Menü-Auswahl wird einfach die Nicht-Standard-Datei angewählt. Es erscheint daraufhin ein Auswahl-Menü (Abb.14.), in dem die Zusatz-Informationen der Datei eingegeben werden müssen. Daraufhin werden die Wertepaare bzw. Wertesätze in den Arbeitsspeicher geladen.

3.7.3. Abspeichern von Dateien

Die Abspeicherung von Mess-Dateien erfolgt in der gleichen Weise wie beim Laden von Standard-Dateien.

Abb.15.: Abfrage Abspeichern einer Datei

) N	(nhalts-Verzeich	nis(J/N),	Verzeichnis [.]	-Wechsel(W),	Menue(M),	Abbruch(A),	(C)?
1	2	3	A NEUES Verzeich	5 WECHSI	ELG ABBRUCH	User 1 17 MENUE 8	Running OK R

Abb.16.: Fortsetzung Abfrage Abspeichern einer Datei

Zusätzlich zu den Funktionen Verzeichnis-Anzeige (J/N), WECHSEL, ABBRUCH und MENUE ist die Funktion NEUES VERZEICHNIS <f4> möglich. Damit wird der momentan gültige Massenspeicher-Pfad angezeigt, und es kann durch Tastatur-Eingabe ein neuer Ordner an diesen Pfad angehängt werden. Es kann jeweils nur ein Ordner angefügt werden, wenn mehrere Ordner hintereinander erzeugt werden sollen, so ist die Funktion NEUES VERZEICHNIS mehrfach hintereinander auszuführen.

Wenn die Funktion MENUE ausgewählt wird, so ist während der Darstellung des Menüs der gesamte Dateiname über die Tastatur einzugeben, also z.B DAT27 oder ASC333 und nicht getrennt nach Dateityp und Datei-Nummer.

In den Programmen MESSZEIT und HPGRAFIK ist es generell nicht erlaubt, vorhandene Dateinamen mit neuen Dateien zu überschreiben. Dies ist sinnvoll, um Messergebnisse auf keinen Fall zu verlieren. Wenn Dateien unter 7.4. oder 7.5. bearbeitet werden und die Ergebnisse im gleichen Ordner abgespeichert werden sollen, so hat es sich als praktisch erwiesen, an den Dateinamen eine durch einen Punkt getrennte numerische Verlängerung anzuhängen:

z.B. Originaldatei: DAT25 Bearbeitete Datei: DAT25.1

Auf diese Weise ist der Zusammenhang der Dateien direkt sichtbar.

4. Datei-Typen, Datei-Formate

4.1. Datei-Typen, Datei-Namen

Wegen der hohen Anzahl von Dateien bei Messaufgaben ist es nicht besonders sinnvoll, den Dateien selbsterklärende Namen zu geben (dazu können Ordner-Namen verwendet werden). Statt dessen wird in MESSZEIT und HPGRAFIK ein Namen-Format verwendet, welches aus einem Präfix (Vorname) mit drei Gross-Buchstaben und einer folgenden Dezimalzahl (mit oder ohne Punkt) besteht. Eine hinter einem Punkt folgende Endung wie bei sonstigen PC-Dateien wird nicht verwendet. Beispiele dafür sind:

DAT17 ASC23.1 DUX4.129

Messergebnisse können in MESSZEIT und HPGRAFIK in drei Datei-Typen abgespeichert werden. Der standardmässige Typ auf HP-9000-Rechnern ist die **Binär-Datei (BDAT)** mit dem Präfix **DAT**. Sie ist auf Massenspeichern deutlich platzsparender als die anderen Typen und wird auf diesen Rechnern deutlich schneller geschrieben und gelesen. Auf PCs mit HTB haben diese Vorteile wegen der grösseren Festplatten und der höheren Rechengeschwindigkeit keine so grosse Bedeutung. Falls in der Konfigurationsliste kein anderslautender Eintrag vorhanden ist, wird von den Programmen standardmässig DAT verwendet.

Als zweiter Typ steht die **ASCII-Datei** mit dem Präfix **ASC** zur Verfügung. Sie hat den Vorteil, dass sie mit jedem Text-Editor direkt lesbar ist und zum Datenaustausch mit anderen Rechner-Systemen und Programmen am besten geeignet ist.

Der dritte Typ ist die **HP-UX-ASCII-Datei** mit dem Präfix **DUX**. Sie unterscheidet sich von der normalen ASCII-Datei durch die UNIX-Konvention, bei der am Zeilenende nur ein "LF" statt des "CR-LF" steht. Sie wird in HP-UX/RMB-Systemen zum Datenaustausch mit anderen Programmen verwendet.

Bei der Abfrage nach einer zu speichernden oder zu ladenden Datei wird immer der in der Konfigurationsliste CONF_LISTE angegebene Typ, bei Fehlen der Angabe DAT eingeblendet. Der Typ kann bei der Abfrage jedesmal durch einen anderen Typ überschrieben werden.

4.2. INT-Standard-Datei

Um jederzeit den Inhalt und die Bedeutung einer Datei anzeigen zu können, besteht jede Mess-Datei neben den eigentlichen Messwerten aus einem Datei-Kopf mit Meta-Daten. Hierzu zählen das Erstellungsdatum, zwei Textzeilen Beschreibung, 16 numerische und 10 Text-Konstanten, die teilweise mit festen Bedeutungen belegt sind und teilweise für bestimmte Mess-Anwendungen oder frei zur Verfügung stehen, sowie zwei Zahlen zur Angabe der Spalten und Zeilen des folgenden Messdaten-Feldes.

Tabelle 1: INT-Standard-Datei

Definition der INT-Standard-Datei in ASCII-Format: Alle Zeilen mit Maximal-Länge 80 Zeichen Trennungszeichen <Trenn> für numerische Werte in einer Zeile = "," (Komma), Ende-Zeichen einer Zeile = CR LF Die Datei besteht aus einem Datei-Kopf (1. - 31. Zeile) mit fester Zeilenzahl und einem Datenfeld ab 32. Zeile, dessen Grösse in der 5. Zeile angegeben ist (Anzahl der Spalten, Zeilen). Beispiel: 1. Zeile Dateiname <Präfix><Dezimalzahl> ASC27.1 2. Zeile Beschreibung(1) ASCII-Char 3. Zeile Beschreibung(2) ASCII-Char 4. Zeile Datum ASCII-Char 17.01.2001 5. Zeile Spalten, Zeilen <Num>, <Num> 3, 81 des Datenfeldes 6. Zeile - 16 Zeilen mit jew. einer Zahl <Dezimalzahl> 21.Zeile 9.58123 22.Zeile- 10 Zeilen mit f[MHz] ASCII-Text [40] ASCII-Char 31.Zeile A[dB] 32.Zeile- Datenzeilen <Dez>, <Dez>[, <Dez>] 0.00, 1.25, -28.1 1.00, 1.27, -13.22 Ende 2-5-spaltig durch Komma getr.

Die ASCII-Text-Zeilen in Zeile 22.-31. sind durch die INT-Programme HPGRAFIK und MESSZEIT in ihrer Bedeutung teilweise festgelegt:

Zeile 23.: X-Achsen-Beschriftung (1.Spalte) f[MHz]
Zeile 24.: Y-Achsen-Beschriftung (2.Spalte) A[dB]
Zeile 25.: 2. Y-Achsen-Beschr. (3.Spalte) Phi[Grad]
(Zeile 26: 3. Y-Achsen-Beschr. (4.Spalte)) usw.

In anwenderspezifischen Anwendungs-Masken koennen alle numerischen und Text-Kopf-Variablen mit bestimmten Bedeutungen belegt sein.

4.3. Mess-Anwendungen

Für bestimmte Mess-Anwendungen können einige numerische und Text-Konstanten im Kopf der Standard-Datei mit festgelegten oder über ein Menü eingegebenen Werten belegt werden. Vor Beginn einer Messung wird der Typ der Mess-Anwendung (Zahl > 0) abgefragt. In diesem Fall wird vor jeder Abspeicherung einer Messung ein spezifisches Eingabe-Menü eingeblendet, in welches Zusatz-Informationen zu der Messung eingegeben werden können. Diese werden im Datei-Kopf mit abgespeichert und werden auch beim Lesen einer Datei mit HPGRAFIK als Menü angezeigt.

Als Beispiel sind in Tabelle 2 die Belegungen für die Mess-Anwendung Nr. 4 dargestellt.

Tabelle 2:

```
INT-Standard-Datei
 _____
Belegung der Variablen im Zeilenkopf fuer die Anwendung 4
'Wobbelmessung NEMP-Modellsimulation'
Num var(0)
Num var(1)
Num_var(1)
Num_var(2) Sondenflaeche [m^2]
Num_var(3) Daempfungsglied [dB]
Num_var(4) Abstand Leiter - Sonde [m]
Num_var(5) Sonden-Abschluss-Widerstand [Ohm]
Num_var(6) Pegel [dBm]
Num_var(6) Pegel [dBm]
Num_var(7) Start-Frequenz [MHz]
Num_var(8) Stop- Frequenz [MHz]
Num_var(9) LIN: Schrittweite [MHz]; LOG: -Anzahl der Punkte (neg. Wert)
Num_var(10) Umrechnungsfaktor: Messwiderstand [Ohm] oder Wandlerfaktor [S]
Num_var(11)
Num var(11)
Num var(12)
Num_var(13) Messtyp (fuer diese Anwendung = 4)
Num_var(14) Messgeraet-Nr.
Num_var(15) Messkanal-Nr.
String var$(0)
String_var$(1) Dimension X-Achse
String_var$(2) Dimension Y-Achse (1), Ampli
String_var$(3) Dimension Y-Achse (2), Phase
                           Dimension Y-Achse (1), Amplitude
String var$(4)
String var$(5)
String_var$(6) Dimension Umrechnungs-Faktor:
String var$(7) Typ der Mess-Sonde
                           ('R','W'=Widerst.|'I','S'=Stromwandler|'D'=Diff.Sonde>)
String_var$(8) Messobjekt
String_var$(9)
```

Im Anhang sind die derzeit verfügbaren Mess-Anwendungen mit ihren Belegungen in der Standard-Datei aufgelistet. Weitere Mess-Anwendungen können durch den Benutzer als Unterprogramme geschrieben und im Ordner /MESSPROGRAMME/SUB_PROGRAMME abgespeichert werden (s.u.)

Darüber hinaus sind in MESSZEIT-Messdateien folgende Belegungen der numerischen Kopf-Werte üblich:

Num var(12)	[bei Zeit-Messungen mit Auslese von kompletten
—	Dateien (z.B. Oszilloskop): aktueller Zeit-Wert]
	[bei Parameter-Messungen mit Auslese von kompletten
	Dateien (z.B. Oszilloskop): Wert des Parameters]
Num_var(13)	Messtyp (Anwendungs-Nr.)
Num_var(14)	Messgeraet-Nr.
Num_var(15)	Messkanal-Nr.

4.4. Konfigurationsliste CONF_LISTE

Tabelle 3: Konfigurationsliste CONF_LISTE für HP-9000 / RMB

```
! Konfigurationsdatei CONF LISTE
   _____
1 - -
! Benutzer: RMB Stand (Datum): 2000-12-01
1-----
! Alle Zeilen, die mit '!' anfangen, werden als Kommentar-Zeilen betrachtet
! und nicht ausgewertet.
1 - - - -
     _____
Vorname$=DAT
! Vorname$=ASC
! Lin_typ=1
! Stift=1
! Plotter=0
! Gittertyp$=GITTER
! Frag_gitter$=AUTO
! Gxtyp$=LIN
! Gytyp$=LIN
! Gxlabel$=X
! Gylabel$=Y
! Gxmin=0
! Gxmax=0
! Gymin=0
! Gymax=0
! G besch$=Text
! G besch2$=Text2
! Besch$=Text
! Besch2$=Text2
! V24_adr=9
! V24 baudrate=9600
! Dcomm adr=20
! Dcomm_baudrate=9600
1
Drucker=1
Druckertyp_$=1
Drucker dir$=/SRM LASER
Druckerdatei$=DRUCK
Drucker_msi$=:REMOTE 21,2
!
! Disk=0
! Disk2=0
Datendir$=/USERS
Datendisk$=:REMOTE 21,0
Datendir2$=/USERS
Datendisk2$=:REMOTE 21,0
1
Up pfad$=/MESSPROGRAMME/SPEZIALPROG
Up msi$=:REMOTE 21,0
Fkt pfad$=/MESSPROGRAMME/FUNKTION
Fkt msi$=:REMOTE 21,0
Sub pfad$=/MESSPROGRAMME/SUB PROGRAMME
Sub msi$=:REMOTE 21,0
Mess_pfad$=/MESSPROGRAMME
Mess_msi$=:REMOTE 21,0
```

Tabelle 4: Konfigurationsliste CONF_LISTE für PCs unter HTB

! Konfigurationsdatei CONF LISTE !------! Benutzer: PC1 Stand (Datum): 2010-12-01 1-----! Alle Zeilen, die mit '!' anfangen, werden als Kommentar-Zeilen betrachtet ! und nicht ausgewertet. !-----_____ _____ ! Vorname\$=DAT Vorname\$=ASC 1 ! Lin typ=1 ! Stift=1 ! Plotter=0 ! Gittertyp\$=GITTER ! Frag_gitter\$=AUTO ! Gxtyp\$=LIN ! Gytyp\$=LIN ! Gxlabel\$=X ! Gylabel\$=Y ! Gxmin=0 ! Gxmax=0 ! Gymin=0 ! Gymax=0 ! G_besch\$=Text ! G besch2\$=Text2 1 ! Besch\$=Text ! Besch2\$=Text2 ! V24 adr=9 ! V24 baudrate=9600 ! Dcomm adr=20 ! Dcomm baudrate=9600 1 Drucker=10 Druckertyp_\$=1 ! Drucker_dir\$=/SRM LASER ! Druckerdatei\$=DRUCK ! Drucker msi\$=:REMOTE 21,2 1 ! Disk=0 ! Disk2=0 Datendir\$=C:\USERS Datendisk\$= Datendir2\$=C:\USERS Datendisk2\$= Up pfad\$=C:\MESSPROGRAMME\SPEZIALPROG Up_msi\$= 1 Fkt pfad\$=C:\MESSPROGRAMME\FUNKTION Fkt msi\$= Sub pfad\$=C:\MESSPROGRAMME\SUB PROGRAMME Sub msi\$= Mess pfad\$=C:\MESSPROGRAMME Mess msi\$=

Die Konfigurationsliste CONF_LISTE dient dazu, vom Standard abweichende Einstellungen in MESSZEIT und HPGRAFIK direkt beim Programmstart festzulegen. Die Datei ist eine normale ASCII-Datei, die mit einem Text-Editor (bei HP-9000-Rechnern z.B. mit dem Editor von HPGRAFIK unter Pos.10) eingesehen und geändert werden kann. Standardmässig sind alle Zeilen von CONF_LISTE durch das vorangestellte Ausrufungszeichen als Kommentarzeilen markiert und werden nicht gelesen. Für eine aktive Einstellung wird das Ausrufungszeichen mit einem Editor entfernt und bei Bedarf hinter dem " = " –Zeichen die gewünschte Einstellung eingetragen.

Im ersten Abschnitt kann ASC statt DAT als Standard-Dateityp zur Abspeicherung von Messungen voreingestellt werden.

Im zweiten Abschnitt können abweichende Grafik-Einstellungen voreingestellt werden, die dann im Grafik-Menü erscheinen.

Im dritten Abschnitt kann ein fester Datei-Beschreibungstext voreingestellt werden, der vor der Datei-Abspeicherung noch editiert werden kann.

Im vierten und fünften Abschnitt können Schnittstellen-Parameter und Drucker-Einstellungen festgelegt werden.

Die weiteren Zeilen dienen zur Festlegung von Pfaden für die Abspeicherung von Mess-Dateien sowie von Pfaden für die Programm- und Unterprogramm-Dateien. Auf HP-9000-Rechnern mit RMB müssen der Pfad und das Laufwerk in getrennten Zeilen angegeben werden, auf PCs wird der Pfad mit vorangestelltem Laufwerks-Buchstaben in die Pfad-Zeile eingetragen, die MSI-Zeile bleibt leer oder wird auskommentiert.

Auf HP-9000-Rechnern unter HP-BASIC-WS liegt die Datei CONF_LISTE standardmässig im Ordner /WORKSTATIONS, unter HP-UX/RMB-UX im Ordner /users/xxx. Auf PCs mit HTB sollte CONF_LISTE nach Möglichkeit im HTB-Programm-Ordner liegen.

4.5. Funktionstasten-Belegungs-Datei SYSKEY

Die systemmässige Belegung der Funktionstasten wird im Programmpaket MESSZEIT / HPGRAFIK üblicherweise so abgeändert, dass ein direkter Programmstart über jeweils eine Funktionstaste erfolgen kann. Diese Belegung ist in der Binär-(BDAT-) Datei SYSKEY abgespeichert, die Datei wird durch das AUTOST-Programm geladen. Dazu sollte sie wie die CONF_LISTE für HP-9000/RMB im Ordner /WORKSTATIONS, unter HP-UX/RMB-UX in /users/xxx und auf PCs mit HTB im HTB-Programm-Ordner liegen. Die Belegung kann durch EDIT <Funktionstaste> <RETURN> ; Texteingabe <RETURN> und STORE KEY SYSKEY geändert und wieder abgespeichert werden. Diese Belegung hat nichts zu tun mit den Funktionstasten-Belegungen, die zusammen mit einem Schalt- oder Wahl-Menü erscheinen und danach wieder verschwinden.

5. Auswertung gespeicherter Daten (HPGRAFIK)

5.1. Grundsätzliche Vorbemerkungen

Das Programm HPGRAFIK hat folgende Aufgaben:

- grafische Darstellung von bereits gespeicherten Messungen
- Ausdrucken von Mess-Grafiken
- Bearbeiten von Mess-Dateien
 - Addieren, Subtrahieren, Multiplizieren von Dateien
 - Glättung, Kurven-Fit, Integration,
 - Umrechnungen, z.B. dB -> SWR, dBm->W
 - Verknüpfen, Aneinanderhängen von Dateien
 - nachträgliches Editieren
- Neueingabe von Wertepaaren /Wertesätzen über die Tastatur
- Neueingabe von Wertepaaren mittels Digitalisier-Tablett
- Berechnung von Funktionswerten und Abspeicherung als Datei
- Berechnung von Daten-Dateien mit vorhandenen oder selbst geschriebenen Unterprogrammen

Grafische Darstellungen können auch als HPGL-Datei oder in PC-üblichen Grafik-Formaten abgespeichert werden, um in Text-Dokumente eingebunden werden zu können.

(0) STOP	aan aan amaa ah ah	No. Marke	an anna an Annaismean	
(1) Auslese von	Transientenrecorder-h	lessungen (Kur	zdateien MET	.)
(2) Ungebung (Ma	issenspeicher, Inhalts	<u>verzeichnisse</u>	, Drucker, usw	.)
(3) Grafische Da	ırstellung von Dateier	1	30 230	2859
(4) Manipulatior	ı von Dateien			
(5) Behandlung v	on Dateien durch Spea	zialprogramme		
(6) Datenuebertr	agung			
(7) Ausdruck vor	ı Dateien in Tabellenf	Form		
(8) Handeingabe	von Wertepaaren (Tast	tatur, Digital	isier-Tablett)	
(9) Eingabe von	Funktionen und Berech	nung von Fkt.	-Werten	
(10)Text-Editor	fuer ASCII-Dateien			
Nauntmonuo I				2858
Hauptmenue H	РБКНЕГК			2050
lvl l^l=Zeile wa	ehlen			
	NGARANTANI NGARANTANI NGARANTANI			Jser 1 Running
1HILFE 2	3 4	5	6 ABBRUCH7 Q	JIT 8 OK
			0.000	R

Abb.17.: Hauptmenü HPGRAFIK

Der Menüpunkt "(1) Auslese von Transientenrecorder-Messungen" ist lediglich aus Rückwärts-Kompatibilitätsgründen noch vorhanden. Er dient zur Auslese von Dateien eines alten Messprogramms.

5.2. Programm-Konfiguration (Umgebung)

Hier können die Ordner für das Lesen und Abspeichern von Mess-Dateien eingegeben und Drucker ausgewählt werden.

Im Gegensatz zum Programm MESSZEIT werden im Programm HPGRAFIK für das Lesen und Abspeichern von Dateien getrennte Pfade verwendet. Dies hat den Vorteil, dass beim Auswerten grösserer Mengen von Messergebnissen und Wiederabspeichern der Ergebnisse nicht ständig die Ordner gewechselt werden müssen.

5.2.1. (1) Massenspeicher und Inhaltsverzeichnis (Lesen)

Hier wird der Pfad für das Lesen von Dateien eingegeben. Der in der Konfigurationsdatei CONF_LISTE für Lese-Operationen eingetragene bzw. der zu Beginn des Programmteils abgefragte Pfad ist hier voreingestellt und kann editiert werden.

Abb.18.: Menü UMGEBUNG

5.2.2. (2) Massenspeicher und Inhaltsverzeichnis (abspeichern)

Dieser Pfad dient zum Abspeichern von Dateien aus Operationen wie Umrechnen, Manipulieren, Neueingabe, Berechnung von Funktionswerten. Hier kann der in der Konfigurationsdatei CONF_LISTE für Speicher-Operationen eingetragene bzw. der zu Beginn des Programmteils abgefragte Pfad editiert werden. In vielen Fällen ist er zu Beginn identisch mit dem Lese-Pfad.

5.2.3. (3) Katalog eines Massenspeichers / Verzeichnisses

Hier kann eine Anzeige der Ordnerstruktur in Menüform aufgerufen werden, die unabhängig von den in (1) und (2) ausgewählten Pfaden ist. Auf diese Weise kann eine Suche nach Dateien unabhängig von Lese- und Schreib-Operationen erfolgen. Von Standard-Dateien kann auch hier der Dateikopf mit der Beschreibung angezeigt werden, es kann allerdings keine Datei geladen werden.

5.2.4. (4) erweiterter Katalog mit Ausdruck aller Dateiköpfe eines Typs

Dieser Punkt ermöglicht den Ausdruck der Beschreibungen (Dateikopf) aller Dateien eines Ordners. Der hierbei verwendete Ordner kann in einem Datei-Auswahl-Menü (siehe 3.3.2.) gewählt werden. Der Ausdruck erfolgt entweder auf dem Bildschirm bzw. dem Drucker oder in eine ASCII-Textdatei im selben Ordner. Der Name dieser Datei ist voreingestellt auf "Katalog_" und eine laufende Nummer. Auf diese Weise kann man schnell eine Übersicht der Messungen in einem Ordner erstellen.

5.2.5. (6) Drucker-Auswahl

Dieser Punkt dient zur Auswahl des Druckers für den Ausdruck von grafischen Darstellungen und Tabellen. In den meisten Fällen wird dieser bereits durch einen Eintrag in der Konfigurationsdatei CONF_LISTE voreingestellt. Ansonsten wird standardmässig der Standard-Drucker unter (1) angezeigt. Die weitere Drucker-Auswahl unterscheidet sich sehr zwischen HP-9000-Rechnern und PCs mit HTB und Windows. Bei ersteren wird der Drucker vom Rechner direkt adressiert, während in einer Windows-Umgebung die Druckaufträge üblicherweise über die Windows-Druckerverwaltung laufen.

Für HP-9000-Rechner werden folgende Auswahlmöglichkeiten angeboten:

- (1) Lokaler Standard-Drucker mit HPIB-Adresse 701 (Thinkjet, Quietjet, ältere Thermodrucker und Nadeldrucker,
- (2) lokale Deskjet-Drucker mit HPIB-Adresse 701 bzw. mit HPIB/Parallelwandler und Wandler-Adresse 701,
- (3) lokale Laser-Drucker mit serieller Schnittstelle (ISC=9),
- (4) Drucker, die über ein SRM-Netzwerk erreichbar sind,
- (5) Laser-Drucker, die über ein SRM-Netzwerk erreichbar sind,
- (6) manuelle Eingabe der HPIB-Adresse für (1) und (2),
- (7) Drucken in Netzwerk-Datei bzw. auf Druckern, die über ein TCP/IP-Netzwerk angeschlossen sind,
- (8) lokaler Farbdrucker mit Parallel-Schnittstelle.

Auf PCs mit HTB und Windows wird nur folgendes angeboten:

 (1) Lokaler Standard-Drucker (Windows-Drucker) Hier wird der im Windows-Drucker-Menü eingestellte Drucker verwendet, der sowohl lokal oder an einem Netzwerk angeschlossen sein kann. In neueren HTB-Versionen (9, 10) kann in einem Drucker-Konfigurations-Menü der HTB-Umgebung einer der Windows-Drucker unabhängig von der sonstigen Rechnereinstellung für diesen Punkt ausgewählt werden.

- (6) manuelle Eingabe der Drucker-Adresse (nur im Notfall für einen GPIB-Drucker)
- (7) Datei / Netzwerk-Drucker Hierüber kann in eine Datei oder bei einer speziellen HTB-SRM-Netzwerkanbindung auf einen Netzwerkdrucker gedruckt werden.
- (8) lokaler Farbdrucker (parallel), nur im Notfall unter HTB/DOS.

5.2.6. Pfade für Unterprogramme

(7) Massenspeicher / Verzeichnis für Spezialprogramme

Normalerweise steht dieser Pfad auf /MESSPROGRAMME/SPEZIALPROG. Er kann jedoch durch einen Eintrag in CONF_LISTE oder durch Editieren dieses Pfades umgeleitet werden. Der Inhalt dieses Ordners mit Unterordnern enthält z.B. Umrechnungsprogramme für Dateien und spezielle physikalisch/technische Berechnungs-Programme mit Standard-Datei-Ein- und Ausgaben. Für einen speziellen Benutzer können in dem alternativen Pfad selbstgeschriebene oder modifizierte Unterprogramme gehalten werden.

(8) Massenspeicher / Verzeichnis für Funktionsprogramme

In einem alternativen Pfad können selbstgeschriebene Programme zur Berechnung von Funktionswerten untergebracht werden.

(9) - (11) Massenspeicher / Verzeichnis für MESSZEIT-Unterprogramme

Änderungen an diesen Pfaden sind nur erforderlich, wenn MESSZEIT nicht in der Standard-Ordner-Struktur installiert wurde.

5.3. Grafische Darstellung von Dateien

Dieser Menüpunkt dient zur grafischen Darstellung einer oder mehrerer Dateien und zur Ausgabe der Grafik auf einen Drucker oder Plotter oder in eine HPGL-Datei (xxx.plt). Es können mehrere Kurvenzüge in die durch die erste Datei festgelegte Grafik-Ebene eingezeichnet werden, und es können (je nach Ausstattung des Rechners) eine Anzahl von Farben ausgewählt werden. Die Skalierung der X- und Y-Achsen kann automatisch oder von Hand erfolgen, die Achsenbeschriftungen können aus der Datei entnommen oder von Hand eingegeben werden. Darüber hinaus können Linientypen, Symbole an Messpunkten und das Erscheinungsbild der Grafik (Gitter/Rahmen/Achsen) ausgewählt werden. Neben der kartesischen X-Y-Darstellung ist auch eine Polarkoordinaten-Darstellung möglich.

Bei jeder Anwahl des Menüpunktes wird ein Datei-Auswahl-Menü nach 3.7.1. eingeblendet. Bei Bestätigung wird die neue Datei in den Arbeitsspeicher geladen. Im anderen Fall bleibt die alte Datei im Arbeitsspeicher erhalten und kann mehrmals hintereinander dargestellt und ausgedruckt werden. Auch die Ergebnisse der folgenden Menüpunkte (Manipulation, Umrechnung, Funktionsberechnung, Neueingabe) bleiben erhalten und können mit 5.3. ohne neues Laden dargestellt werden.

1)	Grafik-Ausgabegeraet(09) 0
2)	Grenzen der Grafik (AUTO FEST) AUTO
3)	X-Achse(LIN LOG) LIN_AUTO
4)	X-Achsen-Beschriftung f [MHz]
5)	X(min)0
6)	X(max)0
7)	Y-Achse(LIN LOG) LIN_AUTO
8)	Y-Achsen-Beschriftung S11[dB]
9)	Y(min)0
10)	Y(max)0
11)	Darstellung(GITTER RAHMEN ACHSEN) GITTER
12)	Achsenbeschriftung(ENDE ZENTR) ENDE
13)	Linien-Typ(110) 1
14)	Farbe / Stift(08) 1
15)	Symbol
16)	Beschreibung (1.Zeile)
17)	Beschreibung (2.Zeile)
100000000	
Gra	afik-Einstellungen
V	^ =Zeile waehlen
	User 1 Running
HII	.FE 2WAHL 8WAHL 4 DRUCKEN 5 6 ABBRUCH7 QUIT 8 OK
	<> B

In 3.7.1. ist auch beschrieben, wie Nicht-Standard-ASCII-Dateien (z.B. EXCEL-Dateien, CSV-Dateien usw.) geladen und grafisch dargestellt werden können. Eine geladene Datei steht anschliessend für weitere Operationen, z.B. auch zur Abspeicherung als Standard-Datei, zur Verfügung.

Nach der Datei-Auswahl erscheint das **Grafik-Einstellmenü** (Abb.19.), in dem alle wesentlichen Parameter der grafischen Darstellung eingestellt werden können:

(1) Grafik-Ausgabegerät

Das Grafik-Ausgabegerät kann mit der Taste <f1> (HILFE) über ein weiteres Menü ausgewählt oder numerisch eingegeben werden. Die Standard-Einstellung ist "0" (Bildschirm / Drucker). Auf HP-9000-Rechnern kann ein zweites Grafik-Interface des Rechners ausgewählt werden, weiterhin eine Reihe von lokalen oder Netzwerk-Plottern. Auf PCs mit HTB dürften diese i.a. nicht verfügbar sein, so dass dort diese Ausgaben über den Bildschirm und Windows-Drucker erfolgen.

Mit der Auswahl "5" (Ausgabe in Datei) kann die Grafik statt auf den Bildschirm in eine HPGL-Datei geplottet werden. Dies ist auch mit mehreren hintereinander zu plottenden Kurven möglich. Die HPGL-Datei (Dateiname Abb_xxx.PLT) kann abgespeichert und später in ein Text-Dokument importiert werden.

(2) Grenzen der Grafik (AUTO|FEST)

Mit der Einstellung AUTO werden X- und Y-Achse automatisch skaliert. Wenn eine der Achsen von Hand skaliert werden soll, so ist hier FEST einzugeben. Die Standard-Einstellung ist AUTO. Zwischen den möglichen Einstellungen kann mit den Tasten <f2> (WAHL \leftarrow) und <f3> (WAHL \rightarrow) ausgewählt werden.

(3) X-Achse

Wenn (2) auf FEST steht, kann mit diesem Menüpunkt zwischen den Einstellungen LIN | LIN_AUTO | LOG | LOG_AUTO | POL (Tasten <f2>, <f3> oder Handeingabe) gewählt werden. Hier ist feste oder automatische Skalierung für die X-Achse möglich, darüber hinaus können die X-Werte als Winkel in einer Polarkoordinaten-Darstellung eingetragen werden.

(4) X-Achsen-Beschriftung

Die X-Achsen-Beschriftung wird aus dem Kopf der geladenen Datei entnommen. Sie kann (nur für die grafische Darstellung) von Hand geändert werden. Wenn eine Achsen-Beschriftung in einer Datei permanent geändert werden soll, so muss dies im Manipulation-Menü erfolgen.

(5) X(min), (6) X(max)

Der minimale und maximale X-Wert werden aus den Datei-Werten ermittelt und angezeigt. Sie können für die grafische Darstellung nur dann geändert werden, wenn (2) auf FEST und (3) auf LIN oder LOG steht. Wenn beide Einstellungen auf "0" stehen, wird auf jeden Fall automatisch skaliert.

(7) Y-Achse

Wenn (2) auf FEST steht, kann mit diesem Menüpunkt zwischen den Einstellungen LIN | LIN_AUTO | LOG | LOG_AUTO (Tasten <f2>, <f3> oder Handeingabe) gewählt werden. Hier ist feste oder automatische Skalierung für die Y-Achse möglich.

(8), (9), (10) Y-Achsen-Beschriftung, Y(min), Y(max)

Wie für die X-Achse werden die Einstellwerte der Y-Achse aus der Datei entnommen und angezeigt.

(11) Darstellung (GITTER|RAHMEN|ACHSEN)

Hier kann die Gesamt-Darstellung der Grafik-Ebene zwischen einem Koordinaten-Gitter (Standard-Einstellung), einem Rahmen um den Grafik-Bereich und zwei Achsen umgeschaltet werden. Der Standard-Wert kann in CONF_LISTE festgelegt werden. Die Umschaltung kann wiederum mit <f2> und <f3> erfolgen.

(12) Achsen-Beschriftung (ENDE|ZENTR)

Die Achsen-Beschriftung kann wahlweise am Ende einer Achse oder in der Mitte erscheinen. Auch dieser Wert kann in CONF_LISTE festgelegt werden.

(13) Linien-Typ

Mit dieser Auswahl kann der Linien-Typ zwischen zwei Messpunkten eingestellt werden. Neben der numerischen Auswahl kann über <f1> (HILFE) ein Auswahl-Menü eingeblendet werden.

- 1 = durchgezogene Linie zwischen Wertepaaren
- 2 = Punkt am Wertepaar
- 3 = weit gepunktete Linie
- 4 = eng gepunktete Linie
- 5 = gestrichelte Linie
- 6 = strich-punktierte Linie
- 7 = weit-eng-gestrichelte Linie
- 8 = strich-doppelpunktierte Linie
- 9 = durchgezogene Linie mit kleinen Endbalken
- 10 = durchgezogene Linie mit grossen Endbalken

Die verschiedenen Linien-Typen sind nur dann sichtbar, wenn zwischen den Messpunkten ein genügend grosser Abstand vorhanden ist. Bei einigen hundert Messpunkten ist die Einstellung sinnlos, und es ist "1" einzugeben.

(14) Farbe / Stift

Die Farbe der geplotteten Kurve kann neben der numerischen Eingabe über das HILFE-Menü <f1> ausgewählt werden.

S/W-Bild	schirm Fa	arb-Bildschirm	Plotter
1 = zeichnen 2 = 3 = 4 = 5 = 6 = 7 -	w g g c b	eiss ot elb rün yan lau	schwarz rot gelb grün violett blau
7 = 8 =	ſĭ	lagenta	schwarz (P3)
<0 = löschen	(öschen)	

Die Standard-Einstellung ist "1" (weiss auf dem schwarzen Bildschirm, schwarz auf dem weissen Drucker- bzw. Plotter-Papier). Die Farben orientieren sich an den Einstellmöglichkeiten für den Bildschirm und die teilweise abweichenden Plotter-Einstellungen.

(15) Symbol

An jeden Messpunkt der Kurve kann ein Symbol gezeichnet werden, welches neben der numerischen Eingabe über <f1> HILFE ausgewählt werden kann.

- 0 = kein Symbol
- 1 = senkr. Kreuz (+)
- 2 = schräges Kreuz (X)
- 3 = Rechteck
- 4 = Raute
- 5 = Dreieck, Spitze oben
- 6 = Dreieck, Spitze unten
- 7 = Kreis 8
- 9 = Fehlerbalken (nur bei Dateien mit 2 oder 3 Y-Spalten)

Auch hier ist eine Auswahl abweichend von "0" nur sinnvoll, wenn zwischen den Messpunkten ein genügend grosser Abstand vorhanden ist. Die Auswahl "(9) Fehlerbalken" kann nur dann angewählt werden, wenn eine Datei diese Information enthält. Die Gesamtlänge des Fehlerbalkens in Y-Richtung wird aus einer zweiten Y-Spalte der Datei ausgelesen, die positive und negative Länge des Balkens aus einer zweiten und einer dritten Y-Spalte.

(16), (17) Beschreibung

Innerhalb des Grafik-Feldes können zwei Textzeilen am unteren Rand eingefügt werden. Normalerweise ist dies nicht nötig, da bei einer Drucker-Kopie des Bildschirms die Datei-Beschreibung aus dem Datei-Kopf mit ausgedruckt wird. Bei Plotter-Ausgaben oder zusätzlichen Beschriftungen (z.B. Farbzuordnung) kann dies sinnvoll sein.

Abb.20.: Grafische Darstellung einer Messkurve

Nach Bestätigung des Grafik-Auswahl-Menüs wird die Kurve der Messdaten zusammen mit einem Grafik-Raster auf dem Bildschirm dargestellt bzw. bei Anwahl eines Plotters oder einer Datei hierauf geplottet. Zur Kontrolle der Grafik ist es empfehlenswert, erst eine Bildschirm-Ausgabe (0) einzustellen und erst dann mit sonst unveränderten Einstellungen und ohne Neu-Laden auf Plotter oder Datei umzuschalten.

Nach Fertigstellung der Grafik wird nach Eintrag einer weiteren Kurve (J/N) gefragt. Diese wird dann in den X- und Y-Grenzen der ersten Kurve und mit deren Achsen-Beschriftung eingetragen. Anschliessend wird nach Ausdruck der Grafik auf einem Drucker gefragt.

Vor der Ausdruck-Frage kann durch Tastatureingabe von "C" ein **Cursor** in das Bildfeld eingeblendet werden, der mit Maus, Drehknopf (HP-9000) und Cursor-Tasten bewegt werden kann. Die X- und Y-Koordinaten der Cursor-Position werden am oberen Bildrand angezeigt, um schnell Wertepaare einer Messkurve ablesen zu können.

5.4. Berechnungen mit Datei-Inhalten (Manipulation)

Der Menüpunkt "Manipulation von Dateien" dient dazu, Messdaten auszuwerten, umzurechnen und miteinander zu verknüpfen, z.B.

- einfache arithmetische Operationen (Verschieben, Stauchen, Dehnen, Logarithmierung, Absolutbetrag-Bildung usw.),
- Verknüpfung mehrerer Dateien (Addition, Subtraktion, Multiplikation, Division),
- Mittelwertbildung, Glättung, Integration, Differentiation,
- Kurvenanpassung (Fit) an Datei-Wertepaare, usw.

Abb.21.: Haupt-Menü Manipulation

Eine bereits im Arbeitsspeicher befindliche Datei muss nicht neu geladen werden und kann sofort weiterbearbeitet werden. Ein Neu-Laden ist jedoch an jeder Stelle möglich. Die meisten Operationen können nur mit zweispaltigen Dateien (eine Y-Spalte) durchgeführt werden. Bei mehrspaltigen Dateien wird während des Ladens zur Auswahl einer Y-Spalte aufgerufen. Das Haupt-Menü Manipulation führt zu einer Reihe von weiteren Unter-Menüs für unterschiedliche Berechnungsarten.

In allen Unter-Menüs kann mit <f4> eine neue Datei geladen und mit <f2> das Ergebnis einer Bearbeitung (der momentane Arbeitsspeicher-Inhalt) abgespeichert werden. Wenn in einem Bearbeitungsschritt zwei Dateien verknüpft werden sollen, so kann die zweite Datei mit <f3> (UNTERGRUND LADEN) geladen werden. Das Ergebnis einer Bearbeitung kann jederzeit mit <f5> (GRAFIK ZEIGEN) in einer grafischen Darstellung kontrolliert werden.

5.4.1. (10) Verschiebung, Dehnung, Nullpunkt, Teile löschen

Abb.22.: Menü Verschiebung, Dehnung, Nullpunkt, Teile löschen

In diesem ersten Manipulations-Menü können einfache Umrechnungen mit einzelnen Dateien durchgeführt werden:

(1) - (4)

Hier werden alle X- bzw. aller Y-Werte einer Datei mit einer über die Tastatur eingegebenen Konstanten addiert oder multipliziert.

(5) Definition eines Y-Nullpunkts und entspr. Y-Verschiebung

Im Y-Wertebereich einer Datei kann ein neuer Y-Nullpunkt definiert und alle Y-Werte entsprechend umgerechnet werden. Der Y-Nullpunkt kann entweder numerisch eingegeben oder in einer grafischen Darstellung mit dem Cursor markiert werden.

(6) Definition eines X-Nullpunkts und X-Verschiebung

Im X-Wertebereich einer Datei kann ein neuer X-Nullpunkt definiert und alle X-Werte entsprechend umgerechnet werden. Alle neuen Wertepaare mit X<0 werden gelöscht. Der X-Nullpunkt kann entweder numerisch eingegeben oder in einer grafischen Darstellung mit dem Cursor markiert werden.

(7), (8) Löschen des Anfangs- bzw. End-Bereichs einer Datei

Alle Wertepaare einer Datei, deren X-Werte kleiner bzw. grösser als eine Konstante sind, werden gelöscht. Die X-Konstante kann entweder numerisch eingegeben oder in einer grafischen Darstellung mit dem Cursor markiert werden.

(9), (9.1) Begrenzung der Y-Werte nach unten und oben

Alle Y-Werte einer Datei werden auf den Wert einer eingegebenen Konstante nach unten bzw. oben begrenzt.

(9.2) Normieren des Y-Minimums auf Konstante ($Y \rightarrow Y - Ymin + Konstante$)

(9.3) Normieren des Y-Maximums auf Konstante ($Y \rightarrow Y - Ymax + Konstante$)

Der minimale (9.2) bzw. der maximale (9.3) Y-Wert einer Kurve wird auf den eingegebenen Wert 'Konstante' gesetzt. Alle anderen Y-Werte werden entsprechend verschoben:

 $Y \rightarrow Y - Ymin + Konstante$

bzw.

 $Y \rightarrow Y - Ymax + Konstante.$

Auf diese Weise kann die Abweichung einer Kurve von einem eingegebenen minimalen bzw. maximalen Wert dargestellt werden.

5.4.2. Addition, Multiplikation von zwei Dateien

Abb.23.: Addition, Multiplikation von zwei Dateien

In diesem Menüpunkt können die Y-Werte zweier Dateien miteinander verknüpft werden. Die erste Datei ist die bereits im Arbeitsspeicher vorhandene bzw. die mit <f4> geladene Datei, die zweite Datei (Untergrund) wird mit <f3> (UNTERG. LADEN) in einen separaten Untergrund-Arbeitsspeicher-Bereich geladen. Das Ergebnis der Bearbeitung steht danach im normalen Arbeitsspeicher und kann mit <f5> kontrolliert und mit <f2> abgespeichert werden. Folgende Operationen sind möglich:

- Datei Untergrund
- Datei + Untergrund
- Datei / Untergrund
- Datei * Untergrund

Die Operationen werden auf die Y-Werte der beiden Dateien, die zu gleichen X-Werten gehören, angewandt (also nicht auf die mit gleicher Zeilen-Nummer!). Da in sehr vielen Fällen die X-Stützstellen der beiden Dateien nicht gleich sind, werden vorher die Wertepaare der Haupt-Datei an den X-Werten der Untergrund-Datei interpoliert. Wenn sich die X-Wertebereiche der beiden Dateien nicht überdecken, so wird eine Fehlermeldung ausgegeben und die Operation abgebrochen. Wenn die X-Bereiche sich nur teilweise überschneiden, so wird eine Warnmeldung wegen evtl. fehlerhafter Interpolation abgegeben.

5.4.3. (30) Integration, Differentiation

Hier können folgende Berechnungen mit Dateien durchgeführt werden:

(21) Integration der Kurve Y=f(X) und Darstellung als Y=F(X)

(22) Anpassung einer Spline-Kurve an die Daten und Integration der Spline-Kurve.

Die Spline-Kurve soll einen "glatteren" Verlauf einer Kurve mit wenigen Punkten erzeugen. Allerdings fängt sie häufig an zu "schwingen", was die Realität nicht widerspiegelt. Für viele Punkte wird die Rechenzeit insbesondere auf HP-9000-Rechnern sehr hoch.

(23) Berechnung des bestimmten Integrals zwischen zwei X-Werten

Die Grenzen der Integration können numerisch eingegeben oder in einer Grafik durch Markieren von zwei Werten mit dem Cursor bestimmt werden. Das Ergebnis wird numerisch auf dem Bildschirm angezeigt.

(24) Berechnung des bestimmten Integrals einer Spline-Kurve

Die Berechnung erfolgt wie in (23), die Anmerkungen bezüglich der Spline-Interpolation gelten auch hier.

(25) Nullpunkt-Korrektur nach Integration

Bei der Integration einer Kurve nach (21) ergibt sich häufig ein "Fehler" dadurch, dass die Originalkurve einen konstanten Anteil (z.B. Gleichspannungs-Anteil) enthält. Das Ergebnis besteht dann aus einer linear ansteigenden Geraden mit der daraufgesetzten Integration des Messergebnisses. Dies kann korrigiert werden, indem in der grafischen Darstellung am Ende der Kurve ein Y-Wert markiert wird und die so definierte ansteigende Gerade vom Ergebnis der Integration abgezogen wird.

(26) Differentiation der Kurve Y=f(X) und Darstellung Y=f'(X)

Diese Operation kann nur auf Kurven mit äquidistanten X-Werten angewandt werden. Im Zweifelsfall kann die Kurve vorher an einer weiteren Kurve mit äquidistanten X-Werten interpoliert werden (siehe 5.4.4.).

(27) Differentiation der Spline-Kurve von Y=f(X)

Bei wenigen Punkten macht die Differentiation nach (26) keinen Sinn. Durch vorherige Spline-Interpolation kann dieses Problem evtl. behoben werden (siehe auch Bemerkungen zu (22).

5.4.4. (40) Mittelung, Glättung, Datenreduktion, Interpolation

In diesem Menüpunkt können verrauschte Kurven durch Glättungsoperationen oder Mittelwert-Bildung ansehnlicher bzw. aussagekräftiger gemacht werden. Das Ergebnis muss nicht unbedingt den physikalischen Sachverhalt besser wiedergeben. Wenn der theoretische funktionale Verlauf bereits bekannt ist, so kann eine Kurven-Anpassung nach 5.4.5. evtl. bessere Ergebnisse liefern. Weiterhin kann hier eine Reduktion der Punkteanzahl und eine Interpolation der Wertepaare an die X-Werte einer anderen Datei durchgeführt werden.

- (31) Daten-Reduktion durch Mittelwert-Bildung
- (32) Daten-Reduktion durch gewichtete Mittelwerte

Bei Dateien mit äquidistanten X-Werten kann durch Mittelwertbildung bzw. gewichtete Mittelwerte über eine bestimmte Anzahl von Punkten eine Verbesserung des Signal/Rausch-Verhältnisses erreicht werden.

(33) Daten-Reduzierung durch Auswahl jedes n-ten Wertes

In diesem Fall findet nur eine Verkleinerung der Datei, aber keine S/N-Verbesserung statt.

(34) Glättung (gewichtet) ohne Datenreduktion

Hier findet (bei äquidistantem X) für jeden Messpunkt eine gewichtete Mittelwert-Bildung über eine bestimmte Anzahl von Punkten (gleitende Mittelwerte) ohne Datenreduktion statt.

(35) Mittelwert der Y-Werte in einem Intervall (Xmin|Xmax)

Die Grenzen der Mittelwertbildung können numerisch eingegeben oder in einer Grafik durch Markieren von zwei Werten mit dem Cursor bestimmt werden. Das Ergebnis wird numerisch auf dem Bildschirm angezeigt.

(36) Interpolation an den X-Werten der Untergrund-Datei

Wenn eine Datei keine äquidistanten X-Werte enthält, diese aber für weitere Berechnungen benötigt werden, oder wenn ein bestimmtes X-Raster erforderlich ist, so kann eine Interpolation der Kurvenwerte an den X-Werten einer zweiten Datei erfolgen. Diese wird mit der Taste <f2> in den "Untergrund-Speicher" geladen.

(37) Interpolation durch Spline-Funktion

Wenn eine Datei nur wenige Punkte enthält, so kann über eine Spline-Funktion eine Kurve mit mehr Wertepaaren durch die Messpunkte gelegt werden. Allerdings fängt diese häufig an zu "schwingen", was die Realität nicht widerspiegelt. Für viele Punkte wird die Rechenzeit insbesondere auf HP-9000-Rechnern sehr hoch. Eine Alternative ist die Anpassung einer bekannten Funktionskurve an die Daten. (38) Mittelung mehrerer Dateien nach Liste

Die grösste Verbesserung des Signal/Rausch-Verhältnisses kann erreicht werden, wenn eine Messung mehrmals wiederholt und die Y-Werte der Messungen gemittelt werden. Der Menüpunkt blendet einen Editor-Bildschirm ein, in dem die Namen der zu mittelnden Dateien eingetragen werden. Beim drei- und mehrspaltigen Dateien kann, durch Komma getrennt, die Nummer der Y-Spalte angegeben werden. Falls die Dateien nicht die gleichen X-Stützwerte besitzen, so werden alle folgenden Dateien an den X-Werten der ersten Datei interpoliert.

5.4.5. (50) Anpassung einer Kurve an die Daten (Regression, Kurven-Fit)

Wenn die funktionale Abhängigkeit der Y-Werte einer Messung von den X-Werten bekannt ist, so bietet die Anpassung einer solchen Kurve an die Daten die beste Möglichkeit der grafischen Darstellung. Folgende Funktionen können hier ausgewählt werden:

- (41) Gerade $Y = A(1)^*X + A(2)$ (42) Logarithmische Kurve $Y = A(1) + A(2)^*LN(x)$
- (43) Exponentielle Kurve
- Y = A(1) * EXP(A(2)*X)
- (44) Polynom n-ten Grades $Y = A(1)^*X^n + A(2)^*X^n(n-1) + ... + A(n)^*X + A(n+1)$
- (45) Gerade in LOG/LOG-Darstellung
- (46) Polynom in LOG/LOG-Darstellung

Der Punkt (48) Anpassung an ladbare Funktion (Optimalfit) ist noch in Vorbereitung.

Die Grenzen, zwischen denen die Anpassung stattfindet, können numerisch eingegeben oder in einer Grafik durch Markieren von zwei Werten mit dem Cursor bestimmt werden. Das Ergebnis kann grafisch auf dem Bildschirm dargestellt werden. Dabei sollten unter (45) und (46) die X- und Y-Achsen auf LOG gestellt sein. Wenn nachfolgend in der Grafik "P" eingegeben wird, so werden die Parameter A(n) sowie die Streuung in einer Liste angezeigt. Insbesondere die Polynom-Berechnungen höherer Grade erfordern eine erhebliche Rechenzeit, die insbesondere auf HP-9000-Rechnern zu beachten ist.

5.4.6. (60) Absolutbetrag, Inversion, Logarithmus, Potenz, Exponent

Die folgenden Operationen werden auf die Werte einer Datei angewandt:

(61), (61.1) Absolutbetrag aller Y- bzw. aller X-Werte

Alle Y- bzw. alle X-Werte einer Datei können durch deren Absolutbetrag ersetzt werden. Für X-Werte kann diese Operation nur ausgeführt werden, wenn alle X > 0 oder alle X < 0 sind.

(62), (62.1) Inversion aller Y- bzw. aller X-Werte

Alle Y- bzw. alle X-Werte einer Datei können durch 1/Y bzw. 1/X ersetzt werden.

(63), (63.1) Logarithmieren von Y- bzw. X-Werten

Alle Y- bzw. alle X-Werte einer Datei können durch a * log10 (Y) bzw. a * log10 (X) ersetzt werden, bei X-Werten nur, wenn alle X>0 sind.

(64), (64.1) Potenzieren von Y- bzw. X-Werten

```
Alle Y- bzw. alle X-Werte einer Datei können durch Y<sup>k</sup> bzw. X<sup>k</sup> ersetzt werden.
```

(65), (65.1) Ent-Logarithmieren von Y- bzw. X-Werten

Alle Y- bzw. alle X-Werte einer Datei können durch a * 10⁽Y/b) bzw. a * 10⁽X/b) ersetzt werden.

(66), (66.1) Exponentialfunktion

```
Alle Y- bzw. alle X-Werte einer Datei können durch 
a * e^Y bzw. a * e^X ersetzt werden.
```

5.4.7. (70) Verknüpfung von Dateien

Die folgenden Operationen werden auf zwei Dateien angewandt, die Datei im Arbeitsspeicher und die Datei im "Untergrund-Speicher".

- (71) Laden der Untergrund-Datei (A-Datei), entspricht <f3>
- (72) Laden der Arbeitsspeicher-Datei (B-Datei), entspricht <f4>
- (73) Kopieren der Arbeitsspeicher-(B)-Datei in die Untergrund-Datei (A)
- (74) Kopieren der Untergrund- (A-)- Datei in den Arbeitsspeicher (B)
- (75) Darstellung der Abhängigkeit der Y-Werte der Arbeits- (B)-Datei von den Y-Werten der Untergrund- (A)-Datei:
 Y(B) → Y; Y(A) → X
- (75.1) Darstellung der Abhängigkeit der Y-Werte der Untergrund- (A)-Datei von den Y-Werten der Arbeitsspeicher- (B)-Datei: $Y(A) \rightarrow Y$; $Y(B) \rightarrow X$
- (76) Vertauschen von X- und Y-Achsen-Werten einer Datei
- (77) Aneinanderfügen der Wertepaare von zwei Dateien

Die Datei mit den niedrigeren X-Werten wird in den Untergrund-Speicher geladen, die mit den höheren X-Werten in den Arbeitsspeicher. Nach der Operation steht die zusammengefügte Datei im Arbeitsspeicher. (Die umgekehrte Reihenfolge ist ebenfalls möglich.) Falls sich die X-Wertebereiche der beiden Dateien teilweise überschneiden, werden die Wertepaare nach aufsteigenden X-Werten geordnet.

(78) Schnitt durch eine Kurvenschar (Parameter-Messungen)

Wenn eine Parameter-Messung in der Art durchgeführt wird, dass für jeden Schrittwert des Parameters eine ganze Datei abgespeichert wird (z.B. aus einem Digital-Oszilloskop, einem Spektrum- oder Netzwerkanalysator), so kann nachträglich ein Schnitt durch die so entstandene Kurvenschar erfolgen. Dazu wird für einen festen X-Wert der Schar-Dateien in jeder Datei der zugehörige Y-Wert ermittelt und dieser in einem Diagramm zusammen mit dem zur Datei gehörigen Parameter-Wert eingetragen.

So kann z.B. mit einem Netzwerkanalysator die Übertragungsfunktion S21 zwischen einer Sende- und einer Empfangsantenne in einem bestimmten Bereich in Abhängigkeit von der Frequenz gemessen und abgespeichert werden. Nach jeder Messung wird die Antenne um einen Schritt gedreht und der Winkelwert als Parameter mit gespeichert. Nach Abarbeitung aller Winkel kann aus der so erhaltenen Kurvenschar mit dieser Methode nachträglich für einen festen Winkelwert das Richtdiagramm einer Antenne, d.h. die Übertragungsfunktion S21 in Abhängigkeit vom Winkelwert (Parameter) entnommen werden.

Zur Auswahl der Dateien und Parameter wird ein Menü eingeblendet, in dem der Typ der Datei, die erste und letzte Datei-Nummer im aktuellen Ordner sowie die Anzahl der jeweils zu überspringenden Dateien und der X-Wert der zu lesenden Dateien eingegeben wird. Das Programm lädt dann nacheinander alle markierten Dateien, liest den zum X-Wert gehörigen Y-Wert aus und stellt alle Y-Werte in Abhängigkeit vom Parameter im Arbeitsspeicher dar.

(78.1) Schnitt durch eine Kurvenschar (Liste)

Wenn die Kurvenschar nicht aus einer Parameter-Messung wie in (78) gewonnen wurde, so steht der Parameter im Datei-Kopf nicht zur Verfügung und muss von Hand eingegeben werden. Dazu wird ein Editor-Bildschirm geöffnet, in den eine Liste von Hand eingegeben werden kann.

In jede Zeile wird ein Werte-Tripel, bestehend aus

[X(i), X(Datei(i), Dateiname(i)] eingetragen. Die X(i) werden als X-Werte der zu erzeugenden Datei übernommen, als Y-Wert der zu erzeugenden Datei wird der jeweils in der Datei i abgelesene Y-Wert an der Stelle X(Datei(i)) verwendet. Die Wertepaare werden nach den X(i)-Werten in aufsteigender Reihenfolge geordnet. z.B.

20		
-20,	1.569,	DATI
-15,	1.5E9,	DAT2
-10,	1.5E9,	DAT3
-5,	1.5E9,	DAT4
0,	1.5E9,	DAT5
5,	1.5E9,	DAT6
10,	1.5E9,	DAT7
15,	1.5E9,	DAT8
20,	1.5E9,	DAT9

Im Prinzip ist so auch ein schräger Schnitt durch die Kurvenschar möglich, wenn die X(Datei(i)) nicht konstant sind sondern ansteigen oder abfallen. Die Tabelle kann auch vor Beginn der Auswertung mit einem separaten ASCII-Editor erzeugt, abgespeichert und im Editor-Fenster mit <f5> geladen werden. Weiterhin ist auch eine Abspeicherung der Tabelle als ASCII-Datei mit <f6> für mehrmalige Verwendung möglich.

(79) Verketten von Dateien

Bei den üblichen Messungen wird eine physikalische Grösse in Abhängigkeit von der Messzeit oder von einem Parameter gemessen. Wenn eine Kalibrier- oder Umrechnungs-Kurve für diese Grösse als Datei vorliegt, so kann mit dieser Verkettungs-Operation eine Umrechnung der Y-Werte gemäss der zweiten Datei erfolgen:

Yb = f(Xb); $Ya = g(Xa) \rightarrow Y = g(f(Xb))$

Die Arbeitsdatei wird, falls nicht schon vorhanden, mit <f4> geladen, die Untergrund-Datei (Umrechnungs-Datei) mit <f3>. Es wird eine neuen Arbeits-Datei erzeugt, bei der die X-Werte der alten Arbeits-Datei (B-Datei) in die neue Arbeits-Datei übernommen werden, während die Y-Werte der Arbeits-Datei (B-Datei) als X-Werte (interpoliert) in die Untergrund-Datei eingesetzt werden. Die zugehörigen Y-Werte der Untergrund-Datei (A-Datei) ergeben dann die Y-Werte der neuen Datei.

z.B.

Mit einem Hf-Diodendetektor soll die Ausgangsleistung eines Testobjekts in einem bestimmten Frequenzbereich gemessen werden. Die Mess-Datei enthält die Dioden-Ausgangs-Gleichspannung in Abhängigkeit von der Frequenz. Als Umrechnungskurve dient die Datei "Ausgangsleistung [dBm] als Funktion der Dioden-Gleichspannung". Wenn diese Umrechnungs-Datei in den Untergrund-Speicher geladen wird, so kann mit der Operation eine Datei "Ausgangsleistung [dBm] als Funktion der Frequenz" erzeugt werden.

5.4.8. (80) Listen-Verarbeitung von Dateien

In diesem Manipulations-Menü können bestimmte Operationen auf alle in einer Liste eingetragenen Dateien angewandt und automatisch ausgeführt werden. Dadurch wird die gleichartige Umrechnung einer grösseren Anzahl von Dateien erleichtert. Alle umzurechnenden Dateien sollten sich in einem separaten Verzeichnis 'Lesen' befinden und durchnummeriert sein. Die umgerechneten Dateien (Ergebnis-Dateien) werden in ein separates Verzeichnis 'Abspeichern' geschrieben, welches vor der Operation unbedingt leer sein muss.

In einem auf die Operations-Auswahl folgenden Menue kann der Typ der zu lesenden und zu speichernden Dateien (DAT|ASC|DUX) sowie die Nummer der ersten und der letzten zu lesenden Datei angegeben werden. Wenn die X- und Y-Achsenbeschriftungen (Label) leer sind, so werden sie von der gelesenen Datei übernommen, ansonsten mit dem Eintrag geändert. Anschliessend wird die gewählte Operation gestartet.

Die Ergebnis-Dateien werden unter den gleichen Datei-Nummern wie die Quell-Dateien (!) in das Verzeichnis 'Abspeichern' (83) geschrieben.

(81) Datei laden als A-Datei (Untergrund-Datei)

Die Untergrund-Datei wird für die Operationen (84),(84.1),(85),(85.1) benötigt. (Gleiche Funktion mit Funktionstaste f3 (UNTERG. LADEN)). Die Untergrund-Datei bleibt im Arbeitsspeicher auch für wiederholte nachfolgende Operationen erhalten.

(82) Wechsel Inhaltsverzeichnis/Massenspeicher (lesen)

Bei den folgenden Listen-Operationen werden die Dateien aus diesem Verzeichnis gelesen. In diesem Verzeichnis sollten sich nur Dateien befinden, die für die Listen-Operationen auch wirklich benötigt werden. Der Pfad zum Verzeichnis bleibt im Arbeitsspeicher auch für wiederholte nachfolgende Operationen erhalten.

(83) Wechsel Inhaltsverzeichnis/Massenspeicher (abspeichern)

Bei den folgenden Listen-Operationen werden die umgerechneten Dateien in dieses Verzeichnis geschrieben. Vor der Operation sollte das Verzeichnis leer sein. Der Pfad zum Verzeichnis bleibt im Arbeitsspeicher auch für wiederholte nachfolgende Operationen erhalten. Achtung: Bei einer erneuten Listen-Operation muss natürlich ein neues leeres Verzeichnis für die Ergebnis-Dateien angewählt werden.

- (84) Listen-Dateien + Untergrund-Datei
- (84.1) Listen-Dateien Untergrund-Datei
- (85) Listen-Dateien * Untergrund-Datei
- (85.1) Listen-Dateien / Untergrund-Datei

Mit der Auswahl eines dieser Menuepunkte wird die automatische Operation für alle Listen-Dateien gestartet.

Die Y-Werte der jeweiligen Listen-Dateien werden mit den Y-Werten der Untergrund-Datei verrechnet. Wenn die X-Stützstellen der Dateien unterschiedlich sind, wird die Untergrund-Datei vorher an den Stützstellen der Listen-Dateien interpoliert. Die unter (81) geladenen Dateien werden dabei nicht verändert.

(86) Konstante eingeben

Die Konstante wird für die Operationen (87),(87.1),(88),(88.1),(89),(89.1) benötigt. Die Konstante bleibt im Arbeitsspeicher auch für wiederholte nachfolgende Operationen erhalten.

- (87) Y(Listen-Dateien) + Konstante
- (87.1) X(Listen-Dateien) + Konstante
- (88) Y(Listen-Dateien) * Konstante
- (88.1) X(Listen-Dateien) * Konstante
- (89) Anfangsbereich von Listen-Dateien löschen (X < Konst.)
- (89.1) Endbereich von Listen-Dateien löschen (X > Konst.)

Mit der Auswahl dieser Menuepunkte wird die automatische Operation für alle Listen-Dateien gestartet.

Die Y- bzw. X-Werte der jeweiligen Listen-Dateien werden mit der Konstanten verrechnet. Die Ergebnis-Dateien werden unter den gleichen Datei-Nummern (!) in das Verzeichnis 'Abspeichern' (83) geschrieben.

(89) Anfangsbereich von Listen-Dateien löschen (X < Konst.)

Die Wertepaare der jeweiligen Listen-Dateien für X < Konstante werden in den Ergebnis-Dateien gelöscht.

(89.1) Endbereich von Listen-Dateien löschen (X > Konst.)

Die Wertepaare der jeweiligen Listen-Dateien für X > Konstante werden in den Ergebnis-Dateien gelöscht.

(89.2) Normieren von Listen-Dateien auf Minimum ($Y \rightarrow Y - Ymin + Konstante$)

(89.3) Normieren von Listen-Dateien auf Maximum ($Y \rightarrow Y - Ymax + Konstante$)

Der minimale (89.2) bzw. der maximale (89.3) Y-Wert der Kurven der Listen-Dateien wird in den Ergebnis-Dateien auf den eingegebenen Wert 'Konstante' gesetzt. Alle anderen Y-Werte werden entsprechend verschoben:

 $Y \rightarrow Y - Ymin + Konstante$ bzw. $Y \rightarrow Y - Ymax + Konstante.$

Auf diese Weise kann die Abweichung der Kurven von einem eingegebenen minimalen bzw. maximalen Wert dargestellt werden. Z.B. wird die Normierung (89.3) dazu verwendet, um das Richtdiagramm einer Antenne im Maximalwert auf 0 dB zu normieren (Konstante = 0).

5.4.9. (90) Änderung von Datei-Einträgen

Jede Standard-Datei (siehe 4.2.) enthält ausser den Messdaten einen Dateikopf mit einer Reihe von Zusatz-Informationen. Diese Inhalte können, insbesondere nach Bearbeitung und Umrechnung von Dateien, editiert und in der neuen Datei mit abgespeichert werden. Die Änderungen (insbes. (92) – (94)) bleiben auch im Arbeitsspeicher erhalten, wenn die Datei momentan noch nicht gespeichert wird.

(91) Änderung der Beschreibung

Die Datei-Beschreibung (2 Zeilen) kann während des Abspeicher-Vorgangs neu eingegeben oder editiert werden.

(92) Editieren des Datei-Kopfes (Num_var(*))

Hier können die 16 numerischen Dateikopf-Einträge editiert werden, z.B. Messart, Messgerät, Messkanal, Parameter-Wert bei Parameter-Messungen usw.

(93) Editieren des Datei-Kopfes (String_var\$(*))

Hier können die 10 Text-Einträge des Dateikopfs editiert werden, insbesondere die X- und Y-Achsen-Beschriftungen, soweit sie nicht schon durch eine Operation verändert wurden.

(94) Eintragungen in den Datei-Kopf für spezielle Anwendungen

Wenn zu Beginn einer Messung eine Mess-Anwendung >0 gewählt wurde, so wurde während jeder Datei-Abspeicherung ein Zusatz-Menü eingeblendet, in dem spezielle Informationen zu der Messung eingegeben werden konnten. Diese Tabellen können nachträglich aufgerufen und die Inhalte editiert werden.

5.5. Behandlungen von Dateien mit Spezialprogrammen

Der MESSZEIT-Programm-Ordner /MESSPROGRAMME/SPEZIALPROG und dessen Unter-Ordner enthalten eine Reihe von Unterprogrammen, die von MESSZEIT und HPGRAFIK nachträglich geladen werden können. Die Auswahl des Unterprogramms erfolgt über ein Datei-Auswahl-Menü nach 3.3.2. Nach Wahl des Unterprogramms mit <RETURN> oder <OK> wird das Programm sofort gestartet. Da viele dieser Unterprogramme zur Umrechnung von Dateien dienen, wird zu Anfang das Laden einer neuen Datei abgefragt. Wenn in diesem Falle keine neue Datei geladen wird, so findet die Umrechnung mit der im Arbeitsspeicher befindlichen Datei statt. Das Ergebnis der Umrechnung steht wiederum im Arbeitsspeicher für alle anderen Operationen zur Verfügung.

Folgende Typen von Unterprogrammen sind wählbar:

 einfache Umrechnungsprogramme i.a. ohne weitere Benutzereingaben im Ordner ./UMRECHNUNG .
 Umgerechnet werden die Y-Werte einer zweispaltigen Datei. Die Y-Achsen-Beschriftung wird entsprechend geändert:

UMR_V_W	Spannung [V] \rightarrow Leistung [W]
UMR_W_V	Leistung [W] → Spannung [V]
UMR_DBM_W	Leistung [dBm] \rightarrow Leistung [W]
UMR_W_DBM	Leistung [W] \rightarrow Leistung [dBm]
UMR_DBM_V	Leistung [dBm] \rightarrow Spannung [V]
UMR_V_DBM	Spannung [V] \rightarrow Leistung [dBm]
UMR_V_DBUV	Spannung[V] \rightarrow Spannungspegel [dBuV]
UMR_DBUV_V	Spannungspegel [dBuV] \rightarrow Spannung [V]
UMR_DBM_DBUV	Leistungspegel [dBm] \rightarrow Spannungspegel [dBuV]

UMR_DB_SWV	Rückflussdämpfung [dB] \rightarrow Stehwellenverhältnis
UMR_GI_AF	Antennengewinn isotrop [dB] \rightarrow Antennenfaktor [dB/m]
UMR_AF_GI	Antennenfaktor [dB/m] \rightarrow Antennengewinn(i) [dB]

 Umwandlung von Datei-Formaten im Ordner ./DATEIEN. Diese Programme ermöglichen die gleichzeitige Umwandlung vieler Dateien von einem Format in ein anderes:

DAT_ZU_ASC	Umwandlung aller DAT-Dateien eines Ordners in ASC-Dateien
DAT_ZU_DUX	Umwandlung aller DAT-Dateien eines Ordners in DUX-Dateien
SIG_ZU_DAT	Umwandlung aller SIG-Dateien eines Ordners in DAT-Dateien

ASC_ZU_DAT Umwandlung aller ASC-Dateien eines Ordners in DAT-Dateien

- mathematische Berechnungen von Dateien in ./MATHEMATIK
 - FFT_R Schnelle Fourier-Transformation einer Datei (hauptsächlich für die Transformation von Impuls-Dateien in den Frequenzbereich)
 - MITTELWERT Mittelwert aller Y-Werte einer Datei und Eintrag als Gerade in eine neue Datei.
- Berechnungen und Umrechnungen von Dateien im Ordner ./HF_ETECHNIK
 - S2P_EXTR Einlesen einer S-Parameter-ASCII-Datei (xxx.s2p) im Touchstone- oder Supercompact-Format, Extraktion eines S-Parameters und Abspeicherung als Standard-Datei.
 - KOAXKABEL Einlesen einer standardisierten Koaxialkabel-Dämpfungs-Datei (dB/100m) und Berechnung der Dämpfung für eine bestimmte Frequenz und eine bestimmte Länge
 - RAUSCHEN Einlese von zwei Rauschleistungs-Dateien (Rauschquelle EIN/AUS) und Berechnung des Rauschmasses nach der Y-Faktor-Methode
 - DBM-TABELLE Berechnung einer dBm-Tabelle und Abspeicherung als Standard-Datei
- Berechnung von Antennen-Daten, Feldern und zugehörigen Messwerten
 - D_FREIRAUM Berechnung der Freiraum-Dämpfung zwischen zwei Antennen bei eingegebenem Gewinn, Frequenz, Abstand, mit Hand-Eingabe oder frequenzabh. Gewinn-Datei
 - EMPF_LEIST Berechnung der Leistung an einer Empfangsantenne mit frequenzabh. Gewinn (Datei) und eingegebener Feldstärke und Ausgabe als Datei
 - ANT_FELD Berechnung der frequenzabh. Feldstärke vor einer Antenne, Eingabe-Datei: Gewinn / Leistung), Ausgabe in Datei

FELDMESS	Berechnung der Feldstärke vor einer Empfangsantenne aus der Ausgangsspannung eines angeschlossenen Detektors.
FELDSTAERKE	Berechnung der Feldstärke im Abstand vor einer Sende- Antenne aus der Spannung an einem Richtkoppler- Detektor
RICHTKOPPLER	Berechnung der Leistung am Ausgang eines Richt- kopplers aus der Spannung an einem Richtkoppler- Detektor.

Weitere selbstgeschriebene Unterprogramme können im Unterordner ./SONST oder auch in anderen Ordnern abgelegt und bei Bedarf aufgerufen werden.

5.6. Datenübertragung

In diesem Menü können Dateien über die seriellen Schnittstellen (V24 / RS232) übertragen werden (hauptsächlich relevant für HP-9000-Rechner ohne Netzwerk-Anbindung). Weiterhin können hier die Programme F_KOPIE oder 1DIR aufgerufen werden, mit denen das Kopieren grösserer Dateimengen zwischen Ordnern und Massenspeichern auch innerhalb der RMB/HTB-Benutzer-Oberfläche möglich ist (hauptsächlich relevant für HP-9000-Rechner).

5.7. Ausdruck von Dateien in Tabellenform

Die im Arbeitsspeicher befindliche Datei kann auf dem Bildschirm oder einem Drucker in Tabellenform ausgedruckt werden.

5.8. Handeingabe von Wertepaaren, Digitalisier-Tablett

Hier kann eine neue Datei durch Tastatur-Eingabe von Wertepaaren bzw. Werte-Sätzen erzeugt und abgespeichert werden. Weiterhin kann die im Arbeitsspeicher befindliche Datei editiert und neu gespeichert werden. Dazu wird ein Bildschirm-Editor nach 3.6 aufgerufen. Die reine Zahlenwert-Tabelle kann hierin auch als ASCII-Datei abgespeichert oder geladen werden. Mit der Funktionstaste <f8> wird die Eingabe beendet und in eine Standard-Datei im Arbeitsspeicher überführt.

Ausserdem kann hier eine Eingabe von Wertepaaren mit einem Digitalisier-Tablett durchgeführt werden. Dies dient vor allem dazu, auf Papier vorliegende Mess-Kurven in Dateien zu überführen. Es kann auch eine bereits geladene Datei im Grafik-Bildschirm unterlegt werden, um diese mit dem Tablett abzutasten. Bedient werden sowohl HPIB/GPIB-Tabletts (ISC=6) wie auch Tabletts mit HIL-Anschluss (HP-9000-Rechner mit HIL-Tastatur-Schnittstelle).

Alle eingegebenen Wertepaare werden nach Eingabe-Ende nach steigenden X-Werten geordnet

5.9. Berechnung von Funktionswerten

Häufig wird für Vergleichszwecke oder zur Demonstration die Kurve einer bestimmten Funktion als Grafik und Datei benötigt. Im Ordner /MESSPROGRAMME/FUNKTION liegen eine Reihe von Funktions-Unterprogrammen, die unter dem Menüpunkt (1) des Funktionen-Menüs geladen und aufgerufen werden können. Nach Eingabe der Funktions-Parameter erfolgt mit <f8> die Berechnung der Funktion und Abspeicherung im Arbeitsspeicher. Mit <f5> (Grafik zeigen) kann die Kurve kontrolliert werden, bevor sie mit <f2> abgespeichert werden kann.

Aushilfsweise kann eine im HPGRAFIK-Programmtext enthaltene Funktion im Menüpunkt (2) mit dem RMB/HTB-Programm-Editor editiert werden. Danach muss das Programm jedoch neu gestartet werden, und mit (3) kann diese Datei dann berechnet werden.

5.10. Text-Editor

Unter diesem Menüpunkt kann der MESSZEIT/HPGRAFIK-Texteditor (siehe 3.6) aufgerufen werden, um ASCII-Dateien erstellen und editieren zu können. Dies ist vor allem nützlich bei HP-9000-Rechnern ohne HP-UX und ohne X11-Windows, da in diesem Falle kein weiterer Texteditor vorhanden ist. In allen Windows-Umgebungen ist dagegen ein separater Texteditor ausserhalb RMB/HTB für solche Aufgaben vorzuziehen.